Systems

File No. $370-36
Order No. SY20-0887-1

IBM Virtual Machine
Facility/370:
System Logic and

Problem Determination
Guide Volume 2

Conversational Monitor System (CMS)

Release 6 PLC 1

This publication is intended for the |BM system
hardware and software support personnel. It
provides the following information for the CMS
component of VM/370:

® Description of program logic
® Module descriptions and cross-references
@ Abend codes

PREREQUISITE PUBLICATIONS

IBM Virtual Machine Facility/370:
Introduction, Order No. GC20-1800
Terminal User’s Guide, Order No. GC20-1810

CMS Command and Macro Reference,
Order No. GC20-1818

CMS User’s Guide, Order No. GC20-1819

Second Edition (March 1979)

This is a major revision of, and obsoletes, SY20-0887-0 and Technical
Fewsletter SN25-0479. This edition applies to Release 6 PLC 1 (Prograas
Level Change) of the TIBM Vvirtual Machine Pacility/370 and to all
subsequent releases until otherwise indicated in new editions or
Technical Newsletters. Technical changes and additions to text and
illustrations are indicated by a vertical bar tc the left of the change.

Changes are periodically made toc the information herein; before usinyg
this publication in comnection with the operation of IBM systems,
consult the latest IBM System/370 Bibliography, Order No. GC20-0001, for
the editions that are applicable and currant.

Publications are not stocked at the address given below; requests for
copies of IBM publications should be made to your IBM representative or
to the IBM tranch office serving your locality.

A form for readers' comments is provided at the back of this
Fublication. If the form has been removed, comments may be addressed to
IEM Corporaticn, ¥M/370 Publications, Dept. D58, Bldg. 706-2, P.C. Box
390, Poughkeepsie, New York 12602. IEBN may use or distribute any of the
information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use
the information you supply.

© Copyright Internaticral Business Machines Corporation 1977, 1979

This publication provides the IBH system
hardware and software support personnel
with the information needed to analyze

problems that may occur on the IBM Virtual
Machine Facility/370 (vM/370).

HOW THIS MANUAL IS ORGANIZED

This manual ccmprises three volumes:

wyolume 1. VM/370 Control Program (CP),"

nyolume 2. Conversational HMonitor Systen
(c¥S)," and "Volume 3. Remote Spooling
Communications Subsystem (RSCS)" contain
the logic description for each of the
components. Each of these volumes is
divided intc four sections: Introduction,
Method of Operation, Directory, and

piagnostic Aids.

The @aetho of operation and program
organization sections contain the functions
and relationships of the program routines
in VM/370. They indicate the program
operation and organization in a general way
to serve as a guide 1in understanding
yM/370. They are not meant to be a
detailed analysis of VM/370 programming and
cannot be used as such.

The directories contain descriptions of
all the assemble modules in CP, CHS, and
RSCS. They also contain extensive
cross-references between modules and labels
within a VY4/370 component.

The diagncstic aids sections contain
additional information useful for
determining the cause of a problem.

The Appendix -- which is in Volume 1 --
contains a description of VM/370 Extended
Control-Program Support (ECPS).

e 1Isolate the component of VM/370 in which
the prcblem occurred.

list of restrictions in ¥M/370
to be certain that the
was being performed was

e Use the
System Messages
operation that
valid.

Preface

e Use the directories and use the ¥YM/370
Data Areas and controcl Block Logic to
help you to isolate the problem.

e Use the method of
organization sections, if
understand the operation
performed.

operation and program
necessary, to
that was being

DEVICE TERMIKOLOGY

The follewing terms in this publication
refer to the indicated support devices:

e n2305" refers to IBM 2305 Fixed Head

Storage, HKodels 1 and 2.

e "270x" refers to IBM 2701, 2702, and
2703 Transmission Control Units or the
Integrated Communications Adapter (ICR)
on the System/370 Model 135.

e ©3330" refers to the IBM 3330 Disk
Storage, H#odels 1, 2, or 11; the TIBM
3333 Disk Storage and Control, Hodels 1
or 11; and the 3350 Direct Access
storage operating in 3330/3333 Hodel 1
or 3330/3333 Hodel 11 compatibility
mode.

e 13340" refers to the IBM 3340 Disk

Storage, HModels A2, Bf1, and B2, and the
3344 Direct Access Storage Model B2.

33s
an

e #3350" refers to the IB
Access Storage Models A
native mode.

N e
=T
o I
N ’-lu
w

=2

refers to IEM
Communications

e n3704n, m3705", or "370X"
3704 and 3705
Controllers.

e The term “3705" refers to the 3705 I and
the 3705 II unless otherwvise noted.

e "2741" refers +to the TIBM 2741 and the

3767, unless otherwise specified.

e n3270" refers to a series of display
devices, namely the IBM 3275, 3276,
3277, 3278 Display Statioms. 2 specific
device type is used only when a
distinction is required between device
types.

Information about display terminal usage
also applies to the IBM 3036, 3138, 3148,
and 3158 Display Consoles when used 1in
display mode, unless otherwise noted.

Preface iii

Any information pertaining to the IBM
3284 or 3286 also pertains to the IEM 3287,
3288 and the 3289 printers, unless
otherwise noted.

CHS COMPONENT

PREREQUISITF PUBLICATIONS

IBM Virtual Machine Facility/370

Terminal User's Guide, Order No.
GC20-181i0
CHS Command and Macro Reference, Order

~e~an

No. GC20-1816

COREQUISITE PUBLICATIONS

IEM Virtual Machine Facility/370

Operator's Guide, Order Ko. GC20- 1806

for Gemeral Users,

System Programmer's Oorder VNo.

GC20-1867

Guide,

System Messages, Order No. GC20-1808

OLTSEP and Error

No. GC20-1809

Recording Guide, Order

Operating Systems in

Oorder No. GC20-1821

a Virtual Machine,

Service Rgoutines Program
No. S5Y20-0882

Logic, oOrder

Areas and Control Block Logic,

r No. SY20-0884

In addition, for EREP Processing the
following O0S/VS Library publications are
required:

0S/VS Environmental
(EREP)

Reccrding Editing and
Order No.

GC28-0772

05/¥S Environmental Recording Editing and
Printing (EREP) Program Logic, Order ©No.
SY28-0773

SUPPLEMENTARY PUBLICATIONS

IBM Systemy/360 Principles of Operation,
Order No. GA22-6821

IB¥ System/370 Principlas cof Operation,
Order No. GA22-7000

IBM 0OS/V¥s, DOS/VS, and VM/370 Assembler
Lanquage, Order No. GC33-4010

IBY 0S/VS and VM/370 Assembler Proqrammer's
Guide, Order No. GC33-4021

RELATED PUBLICATION

IBY Virtual Machine Facility/370 Remote
Spooling Communications Subsystem (RSCS)
User's Guide, Order No. GC20-1816
MISCELLANEOUS INFORMATION

CMS/DOS is part of the CHMS system and is
not a separate system. The term CMS/DOS is
used in this publication as a concise wvay

of stating that the DOS simulation mode of

CHS is currently active; that is, the CHS
command
SET DOS ON
has been previously issued.
The phrase "CMS file system" refers to

disk files that are in CES's 800-byte block
format; CMS's VSAM data sets are not
included.

iv IBM VM/370 Systenm Lcgic and Problem Determination--vVolume 2

SUMMARY OF AMENDMENTS. <« « « o « - «
CONVERSATIONAL MONITOR SYSTEM (CHS). .

INTRODUCTION TO CHMS. o o« o o o o o < =«
The CMS Command Language « . - « « < -
The File System. . . . -«
program Development. . . « . - « - - -

« e e a @& o =

INTERRUPT HAWDLING IN CiS. . . . - « =«
SYC Interruptions. . « .« « o « < o o

Internal Linkage SVCS. . « « « « « =«

Other SVCS. &« o « o o o o 2 = o =« =«
Input/OJtput Interruptions . . . « - .
Terminal Interruptions . « « « « o+ o -
Reader/Punch/Printer Interruptions . .
User-Controlled Device Interruptions .
Program Interruptions. « « « « = « o -
External Interruptions . « <« « =« o « -
Machine Check Interruptions. -

FUNCTIONAL INFORMATION . . <« . « < « -
Register Usage - - - « « « o =« = « ¢ =«
structure of DMSEUC. . « « « « o« « - =«
USERSECT (User Area) . « « « « « = =«
DEVTAB (Device Table). . . « « - -
structure of CMS Storage . . « « =« - -
Free Storage Management. - - =«
GETMAIN Free Storage Management. . .
DMSFREE Free Storage Management. . .
Relea51ng allocated Storage. . . .« -
DASFREE Service Routines - -
Zrror Codes from DMSFRES, DMSFREE,
and DMSFRET o« o « o « = o o = o o =
CMS Handling of PSW Keys - -
CMS svC Handling « e e e e e e e e s
SYC Types and Linkage Conventiocus. .
Search Eierarchy for SVC 202
User and Transient Program Areas . .
called Routine Start-Up Table. . . .
Returning to the Calling Routine . .
CMS Interface for Display Terminals. .

0S MACRO SIMULATION UNDER CMS. . . . -
0S Data Management Simulation. . . . -
Handling Files that Reside on CHS
Disks . « « - . . e e e e e e s
Handling Files that Re51de on 0S or
DOS DiSKS o« o o o = o o o o o « s =
Simulation Notes « « -« « « « -« « - =
Access Method Support. . « « « « « =«
Reading 0S Data Sets and DOS Files
Using OS MAcCIos . « « « « « « « =« -«

DOS/VS SUPPORT UXDER CHMS . . « - « «
CMS Support for 0S and DOS VSAH
FUNCEtiONS « o« o o o o o o s « o o =«

CMS METHOD OF OPERATION AND PROGRAM
ORGANIZATION. .« =« o « « o o o o o o =

.
e
]

.
N
|
-—

.

,
1

.
nEww

'

.
NNNP‘\)NNI\)N
OO WO NSNS~

NN
LN
- |
[eNe)

2-23
2-29
2-31
2-31
2-34

Contents

INITIALIZATION OF THE CMS VIRTUAL
MACHINE ENVIRONHMENT o o o
Initialization: Loading a CHS Vlrtual

Machine from Card Reader. -«
Initializes Storage Contents and
System Tables . « « « « - « « - . -
Processes IPL Command Line
Parameters. . - - « o o = .

Initialize 0S SVC- Handllng w1thout
the Use of the CMSSEG Segment . . .
Tnitializing a Named or Saved System .

Handling the First Command Line Passe
£0 THMSe o o o o o o o s o e e = e o o

Setting and Querying Virtual #achine
Environment Options « « « « « - o - o
DMSSET: SET DOS ON (VSAM) Processing
DHUSSET: SET SYSNAME Processing . . .

PRCCZSSING AND EXECUTING CHMS FILES . .
Maintaining an Interactive Coasole
Environment .
Console Hanagement and Command
Handling in CMS . . « - - « « « = « -
Maintaining an Iinteractive
Command/Response SeSSiON. « « « « « =
Execute Commands Passed via DMSINS
Handle Commands Entered During a cus
Terminal Sessiomn. . « . <« « « o . -
Method of Operation for DMSINT
Method of Operation for DHSITS
Types of SVCs and Liakage
Conventions . . - . e e e .
Search Hierarchy for SVC 202 “« o o
User and Transient Program Areas . .
called Routinz Start-Up Table. . . -
Returning to the Caller. . . « « . -
System and User Save Area Formats. .
Load and Txecute Text Files. =«

SLT Card Routins . . . e 0 e e e s
ICS Card Routine - C2AE1 e s e e s
ESD Type 0 Card Routine - C3AA3. . .
ESD Type 1 Card Routine - ENTESD . .
ESD Type 2 Card Routine - C3aH1. . .
ESD Type 4 Routime - PC. . « « « . -
ESD Tyres 5 and 6 Card Routine -

PRVESD and COMBESD . . . - .
ESD Type 10 Routine - WEAK EXTRN . .
TYXT Card Routinz - CUHRAT . . < « - .
REP Card Roatine - CHAA3 . . « « « =«
END Card Routine - C6AAT «
Control Card Routine - CTLCRD1 . . .
REFADR Routine (DMSLDRB) . . . « « -
PRSFRCH Routine (DMSLDRD). « « « « -«
Loader Data BaSeS. « « « « = = = = =«
ESICTE Entry . . e e .
Patch Control Blouk (PCB) e « o« « o
Loader Input Restrictioms.

Processing Commands That “anipulate
the File System . . . e e s e = s s
Managing the CHS File System e e e e e

Contents Vv

Eow CHS Files Are Organized in Storage 2-86
File Status Tables 2-8¢
Chain Lipks. 2-87
CHS Record Formats 2-88

Disk Organization. , 2-88
Physical Organization of Virtual

Disks & &« « . o . . L 2-88
The Master File Directory. 2-89
Keeping T'rack of Read/Write Disk

Storage: QMSK and QQMSK. 2-90
Dynamic Storagje Management: Active

Disks and Files 2-93
CHS Routines Used To Access the File

System. 2-93
Access a Virtual Disk: DMSACC. . . . 2-93

Handling I/0 Operations. 2-94
Unit Record I/0 Processing 2-9&

Handling Interruptions 2-98

Disk I/0 in CMS. 2-98
Read or Write Disk I/0 2-98

Managinjy CHS Storage . . .| | | | 2-929
T'ypes of Allocated Free Storage. . . 2-99
GETMAIN Free Storage Management

Pointers.2-100
DISFREE Free Storage Pointers. . . .2-101
DMSFRZ Method of Operation2-104
Relative Efficiency of DMSFREE

Requests. . . o ¢ o o ¢ 4
Releasing Allocated Storags.2-105
DMSFRE Service Routines.2-105
Storaje Protection Keys.2-107
CM5 System Handling of PSW Keys. . .2-107
Cp Handling for Saved Systems. . . .2-108
Error Codes from DMSFREE, DMSFRES,

and DMSFRET v
The DMSFRES Macro.
The DMSKEY Macro
The DMSEXS Macro

.

.2-105

.2-110
.2-111
.2-111
.2-112

SIMULATE NON-CMS OPERATING
ENVIRONMENTS. . ¢ ¢ v v v v o o o .
Access Method Support for Non-CKS
Operating Enviromments.2-113
05 Access Method Support2-113
CMS Support for the Virtual Storage
Access Method2-114
Creating the DOSCB Chain2-114
Executing an AMSERV Function2-114
Executing a VSAM Function for a DOS
User. . o . . o v o v o v v v2-116
CM5/D0OS SVC Handling « « o «2-116

.2-113

Executing a VSAM Punction for an OS
User. .
Completion Processing for 09 and

DCS VSAX Programs
CS Simulation by CMS
Simulating a DOS Environment under
CMS
Initializing DOS and Processing DOS
System Control Commands
Setting or Resetting Systen
Environment Options
Process CMS/DOS OPEN anl CLOSE
Fanctions
Process CMS/DOS Execution-Related
Control Commands.
Simulate DOS SVC Functions
SVls Treated as No-Op by CMS/DOS .
Process CMS/DOS Sarvice Commands .
Terminate Processing the CMS/DOS
Environment

.2-118

.2-121
.2-122

.2-137

.2-137
.2-139
.2-140

-2-142
.2-144
.2=-147
.2-148

-2-148

PERFORMING MISCELLANEOUS CMS
FUNCTIONS & . 4 v v v o o o o . « o
CMS Batch Facility
Error Printouts.

.2-149
.2-149
.2-153

CHS DIRECTORIES. . o «. + « v v o . . .2-155

MODULE ENTRY POINT DIRECTORY2-157
MOPULE-TO-LABEL CROSS REFERENCE. . . .2-169
LABEL-TO-¥ODULE CROSS REFERENCE. . . .2-189
CHMS DIAGNOSTIC AIDS. v o . v o o . . .2-237
SUPPORTED DEVICES.2-239
DMSFREX ERROR CODES.
Error Codes from DMSFREE, DMSFRES,
and DESFRET . v v v @ v 4 & o o . -

.2-240
«2-240

.2-241
.2-241

ABEND CODES. . v v v v o o o . . «
Abend Recovery
Unrecoverable Termination -- The

HALT Option of DMSERR e « «2-242

APPENDIX A: CMS NACRO LIBRARY2-247

APPENDIX EB: CMS/DOS Macro Library. . .2-251

INDEX. . ¢ & & & 0 v i i v e v e o . .2-253

vi 1IBM VM/370 Systeam Logic and Program leterminaticn--volumz 2

Figure
Fijure

Figure
Figure

Figure
Figure
Figure
Figure

Figure

Figure
Figure
Tigure

Figure

Figure

10.
11.
12.
13.

14,

CMS File Syste@....cee-cs200276
Devices Supported by a CMS
Virtual Hachin@eecesceoeesea2-13
CMS Storage MaP.....sce--..2-16
CMS Command (and Regquest})
Processing.................2—30
PSE Pields when Called

Routine StartS.eeceaecsceceass2-31
Register Conterts when Called
Routine StaCtS.c.cseeceeeesss2-31
Simulated 0S Supervisor

CallS ececnscancacnassssosss2-37
An Overview of the Functional
ATeas 2f CHSeececscccesaaeea2-52
Details of CMS Systea

Functions and the Routines that
PerfOrm ThoMeeeessccoasesass2 53
PSH Fields when Called

Routine is Started.........2-69
Register Contents when Called
Routine is Started...cce...2-70
How CMS File Records are
Chained TogehteC...ceoes-..2-86
Format of a File Status

Block; Format of a File Status
TaADlCesearecassccsnsssansess2 86
Format of the First Chain

Link and Nth Chain Links...2-89

Figuras

Figure
Figure
FPigure

Figure

Figure

Figure

Figure
Figure

Figure

15.

16.
17.
18.

19.

N
<D
)

21.

FIGURES

Arranjement of Fixed-Length
Records and Variable-Length
Recoris in PFiles..c.cee.....2-89
structure of the HMaster

File DireCtOLfeecsccasceassea2-92
Disk Storage Allocation Using
the QMSK Data Block........2-92
Flow of Control for Unit

Record I/0 Processing......2-94
Relationships in Storage
between the CMS Interface
Module DMSAMS and the

CMSAMS and CMSVSAHM)
DCSSSescaceoccasnsasacsneaal2=115
The Relationships in ‘
Storaje betwean the User
Program and the CMSDOS

and CMSVSAM DCSSSeceeeaas.2-117
Relationship in Storage

between the User Progranm,

the 0S Simulation and

Interface Routines, and the
CMSDOS and CMSVSAM DCSSs..2-118
0S Functions that CMS
SimUlAteSeeececcscnsasesse2=123
Devices Supported by a

virtual Machine...........2-239
CHS Abend COGEScessacessss2=243

Contents vii

viii IBM VM/370 Systeam Logic and Program Determination--Volume 2

suemary of Amendments
for SY20-0887-1
vM/370 Release 6 PLC 1

AUTOMATIC REINITIALIZATION SUPPORT

New: Program and Documentation

This support allovws a cMs virtual
machine to specify that control be given
to a reinitialization program as an
alternative to entering a disabled wait
state after an abend. This information
is included 1in the "CMS Method of
Operation and Program organization™
section cf this publication under
nprocesses IPL Line Parameters® and in
the "CMS Diagnostic aids" section of
this publication under ngnrecoverable
Termination."

summary of Amendments ix

Summary of Amendments

for SY20-0887-0

as updated by TNL SN25-0479
VM/370 Release S PLC 12

INDEX CORRECTION

Changed: Documentation only

The index for VM/370 System Logic and
Problem Determination Guide Yolume 2
(CMS) was in error and has been
corrected.

X IBM VM/370 System Logic and Problenm Determination--volume 2

SYSTEM LOGIC AND PROBLEM DETERMINATION
GUIDE HAS BEEN REORGANIZED

Changed: Documentation only

Probler

¥4/370 Systes Logic and obl
Determination Guide has been split into
three volumes. volume 1 contains the CP
component, Volume 2 the CHS component,

and Volume 3 the RSCS component.

The following material has been removed
from this publication:

e nIntroduction to Debugging"” and
"Debugging vith CHs.n This
information can be found in ¥YM/370
System Programmer's Guide.

e Upppendix a. M /370 Coding
Conventions." This information can
be found in ¥M/370 System Programmers
Guide.

e mappendix B. DASD Record Formats."
This information can be found in
yM/370 Service Routines Program Logic
in the FORMAT section.

e "appendix <C. TVM/370 Restrictions."
This information can be found in
¥M/370 Planping and System Gemeration

Guide or YM/370 System Messages-

e m"apppendix D. Applying PIFs." This
information can be found in ¥M/370
Planning and System Genmeration Guide.

The following sections have been removed
from the "CMS Diagnostic Aids" section
of this publication:

e ZAP Service Program. A complete
description of ZAP can be found in
¥M/370 Operator's Guide.

e DDR. A complete description of DDR
can be found in VM/370 Operator's
Guigde.

e CMS Return Codes. These can be found
in ¥M/370 System Hessages-

e Commands for Debugging. A complete
description of DEBUG can be found in
¥M/310 CHS User's Guide.

Susmary of Amendments
for 5Y20-0887
VYM/370 Release 5 PLC 1

The following bhas been added to Volume
2:

e wpppendix A: CMS Macro Library"
¢ m"Appendix B: CMS/DCS Macro Library"

The fellowing topics have been removed
from "CP Diagnostic Aids":

e CP Commands Used to Debug the virtual
Machine. These are contained in
Commapd Reference for

e (P commands for System Programmers.

These are contained in YH/370
Operator's Guide. '
VM/370 SUPPORTS 3031, 3032, AND 3033

PROCESSORS

New: Program Feature

vM/370 provides suppert for the new
channel-attached consoles that are part
of the 3033 processors. VH/370 uses the
3033 processor model numbers in
selecting model-dependent routines and
setting pertinent tiame slices. The
channels of the new Pprocessors are
supported by the channel check error
recocvery rtoutine.

puring initialization of the machine
check handler/chanmnel check handler,
error frames are read from the Service
Record File (SRF) and vwritten to the
VYM/370 error recording area as a new
record type.

Summary of Amendments Xi

VM/370 MONITOR COMMAND ENHANCED e Specification of a wuserid as the

recipient of the spccled monitor
data.
New: Prograa Feature

VM/370 monitor facilities now include,
in addition to data collecticn on tape, MISCELLANEOUS
spocling to disk. Operands have been
added to the MONITOR command that allow:

Changed: Programming and Documentation
e The autcmatic start and stop of data

collection by defined time-fo-day Minor technical and editorial changes
values. have been made in order to clarify the
text.

e The autcmatic start and stop of data
collection by defining a high limit
value.

xii IBM VM/370 System Logic and Problem Determination--volume 2

Conversational Monitor System (CMS)

7his section contains the following information:

Introducticn to CMS
Interrupt Handling in CHMS
Functional Information
0S Macros Under CMS

DOS/VS Support Under CMS

CMS Introduction

2-1

2-2 IBM VM/370 System Logic and Program Determination--Volume 2

Introduction To CMS

The Conversational Monitor System (CMS), the major subsystem of ¥M/370,
provides a comprehensive set of conversational facilities to the user.
Several copies of CHS may run under CP, thus providing several users
with their own time sharing systen. CHMS is designed specifically for
the ¥M/370 virtual machine environment.

Fach copy of CMS supports a single user. This means that the storage
area contains only the data pertaining to that user. Likewise, each CMS
user has his own machine configuration and his own files. Debugging is

impler because the files and storage area are protected from other
users.

Programs can be debugged from the terminal. The terminal is used as
a printer to examine limited amounts of data. After examining progranm
data, the terminal user can enter commands on the terminal that will
alter the prograa. This is the most common method used to debug
prograas that run in CHMS.

CMS, operating with the VM/370 Control Program, is a time sharing
system suitable for problem solving, program development, and general
work. It includes several programming language processors, file
manipulation commands, utilities, and debugging aids. Additionally, CHS
provides facilities to simplify the operation of other operating systeas
in a virtual machine environment when controlled froe a remote terainal.
For example, CMS capabilities are used to create and modify job streass,
and to analyze virtual printer output.

Part of +the CMS environment is related to the virtual machine
environment created by CP. Each user is completely isolated from the
activities of all other users, and each machine in which CMS executes
has virtual storage available to it and managed for it. The CP commands
are recognized by CMS. For example, the commands allow messages to be
sent to the operator or to other users, and virtual devices to be
dynamically detached from the virtual machine configuration.

The CMS Command Language

The CMS command language offers terminal users a Wwide range of
functions. It supports a variety of programming languages, service
functions, file manipulation, program execution control, and general
system control. For detailed information on CMS commands, refer to the
¥¥/370 CHMS Command and Macro Reference.

Figure 4 describes CMS cosmand processing.

CMS Introduction 2-3

The File System

The Conversational Monitor System interfaces with virtual disks, tapes,
and unit record equipament. The CMS residence device is kept as a
read-only, shared, system disk. Permanent user files may be accessed
from up to nine active disks. Logical access to those virtual disks is
controlled ty CMS, while CP facilities manage the device sharing and
virtual-to-real mapping.

User files in CMS are identified with three designators. The first
is filenanme. The second is a filetype designator that may imply
specific file characteristics to the CMS file wmanagement routines. The
third is a filemode designator that describes the location and access
mode of the file.

The compilers available under CMS default to particular input
filetypes, such as ASSEMBLE, but the file manipulation and 1listing
commands do not. Files of a particular filetype form a logical data
library for a user; for example, the collection of all COBOL source
files, or of all object (TEXT) decks, or of all EXEC procedures. This
allows selective handling of specific groups of files with minimum input
Ly the user.

User files can be created directly from the terminal with the CHMS
EDIT facility. EDIT provides extensive context editing services. File
characteristics such as record 1length and format, tab locations, and
serialization options can be specified. The system includes standard
definitions for certain filetypes.

CHMS automatically allocates compiler work files at the beginning of
command execution on whichever active disk has the greatest amount of
available space, and deallocates them at completion. Compiler object
decks and listing files are normally allocated on the same disk as the
input source file or on the primary read/write disk, and are identified
by combining the input filename with the filetypes TEXT and LISTING.
These disk locations may be overridden by the user.

A single user file is limited to a maximum of 65533 records and must
reside on one virtual disk. The file management system limits the
number of files on any one virtual disk to 3400. Aall CMS disk files are
written as 800-byte records, chained together by a specific file entry
that is stored in a table called the Master File Directory; a separate
Master File Directory is kept for, and on, each virtual disk. The data
records may be discontiguous, and are allocated and deallocated
automatically. A subset of the Master File Directory (called the User
File Directory) is made resident in virtual storage when the disk
directory is made available to CMS; it is updated on the virtuval disk at
least once per command if the status of any file on that disk has been
changed.

Virtual disks may be shared by CMS users; the facility is provided by
V#/370 to all virtual machines, although a user interface is directly
available in CMS commands. Specific files may be spooled between
virtual machines +to accomplish file transfer between users. Commands
allow such file manipulations as writing from an entire disk or from a
specific disk file to a tape, printer, punch, or the terminal. Other
commands write from a tape or virtual card reader to disk, rename files,
copy files, and erase files.' Special macro libraries and text or
program libraries are provided by CMS, and special commands are provided
to update and use them. CMS files can be written onto and restored from
anlabeled tares via CMS commands.

Caution: Multiple write access under CMS can produce unpredictable
results.

2-4 IBM VM/370 System lLogic and Program Determination--Volume 2

Problem programs which execute in CMS can create files on unlabeled
tape in any record and block size; the record format can be fixed,
variable, or undefined. Figure 1 describes the CMS file systenm.

Program Development

The Conversational Monitor System includes commands to create and
compile source programs, to modify and correct source programs, to build
test files, to execute test programs and to debug from the terminal.
The commands Of CMS are especially useful for O©0S and DOS/VS progranm
development, but also may be used in combination with other operating
systems to provide a virtual machine program development tool.

CMS utilizes the 0S and D0S/VS compilers via 1interface modules; the
cospilers theamselves norpally are not changed. 1In order to provide
suitable interfaces, CMS includes a certain degree of 0S and DOS/VS
simulation. The sequential, direct, and partitioned access methods are
logically simulated; the data records are physically kept in the chained
800-byte blocks that are standard to CHS, and are processed internally
to simulate OS data set characteristics. CMS supports VSAM catalogs,
data spaces, and files on 0S and DOS disks using the DOS/VS Access
Method Services. O0S Supervisor Call functions such as GETHMAIN/FREEMAIN
and TIME are simulated. The simulation restrictions concerning what
types of 0S5 object programs can be executed under CHS are primarily
related to the 0S/PCP, MFT, and MVT Indexed Sequential Access Method
(ISAM) and the telecommunications access methods, while functioas
related to pultitasking in 0S and DOS/VS are ignored by CMS. For more
information, see "0S Macro Simulation under CHMS"™ and "DOS/VS Support
under CMS."

CMS Introduction 2-5

9-Z

Z emnIopA--uotjRUIWISILQ weifoxg pue o1boT wsisks QLE/HA WEI

*) ®anbig

wa31sigs STTJd SHD

AFTSECT

ADTSECT

DMSNUC Area of Storage

ADTFDA
ADTMSK

t o
(1808 Chg,
oo i,

Free Storage

F
N { Chain Link
M™ Data Blk
M+1 Data Blk
M+2 Data Blk
,
)
%

AFT
continued

For Read/Write
disks only

QMSK

QamMsK

FSTB,

Data Block M+2

RECt REC?

File Name[File Type|

I FSTFCL

P

There is one FST
for each fite

FST20

PTR TO NEXT]
FST8

Disk Storage

M

M+1 M+2

Interrupt Handling In CMS

CMS receives virtual SVC, input/output, program, machime, and extermal
interruptions and passes control to the appropriate handling program.

SVC Interruptions

The Conversational Monitor System is SVC (supervisor call) driven. S¥VC
interruptions are handled by the DMSITS resident routines. Two types of
SVCs are processed by DMSITS: internal linkage SVC 202 and 203, and any
other SVCs. The internal linkage SVC is issued by the comman and
function programs of the system when they require the services of other
CMS programs. (Commands entered by the user from the terminal are
converted to the internal linkage SVC by DMSINT). The OS SVCs are

issued by the processing programs (for example, the Assembler).

INTERNAL LINKAGE SVYCS

When DMSITS receives control as a result of an internal liankage SVC (202
or 203), it saves the comntents of the gemeral registers, floating-point
registers, and the SVC old PSW, establishes the normal and error return
addresses, and passes control to the specified routine. (The routine is
specified by the first 8 bytes of the parameter list whose address is
passed in register 1 for SVC 202, or by a halfword code following SVC
203.)

For SVC 202, if +the called program is not found in the internal
function table of nucleus (resident) routines, then DMSITS attempts to
call in a module (a CMS file with filetype MODULE) of this name via the
LOADMOD command.

If the program was not found in the function table, nor was a module
successfully loaded, DMSITS returns an error code to the caller.

To return from the called program, DMSITS restores the calling
program's registers, and makes the appropriate normal or error return as
defined by the calling program.

OTHER SVCs

The general approach taken by DMSITS to process other SVCs supported
under CMS is essentially the same as that taken for the internal linkage
SVCs. However, rather than passing control to a command or functiom
program, as is the case with the internal linkage SVC, DMSITS passes
control +to the appropriate routine. The SVC number determines the
appropriate routine.

In handling non-CMS SVC calls, DMSITS refers first to a user-defined
SYC table (if one has been set up by the DMSHDS program) . If the
user—-defined SVC table is present, any SVC number (other than 202 or
203) is looked for im that table. If it is found, control is
transferred to the routine at the specified address.

CHS Introduction 2-7

If the SVC number is not found in the user-defined SVC table (or if
the table is nonexistent), DMSITS either transfers control to the CMSDGS
shared segment (if SETDOS ON has been issued), or the standard systen
table (contained in DMSSVT) of 0S calls is searched for that SVC nuzber.
If the SVC number is found, control is transferred to the corresponding
address in the usual manner. If the SVC is not in either table, then
the supervisor call is treated as an abend call.

The DMSHDS initialization program sets up the user-defined SVC table.
It is possible for a user to provide his own SVC routines.

Input/Output Interruptions

All input/cutput interruptions are received by the I/O interrupt
handler, DMSITI. DMSITI saves the I/0 o0ld PSW and the CSW (channel
status word). It then determines the status and requirements of the
device causing the interrupticn and passes conliol to the routine that
processes interruptions from that device. DHMSITI scans the entries in
the device table until it finds the one containing the device address
that is the same as that of the interrupting device. The device table
(CEVTAB) contains an entry for each device in the system. Each entry
for a particular device contains, among other things, the address of the
program that processes interruptions from that device.

When the appropriate interrupt handling routine completes its
processing, it returns control to DMSITI. At this point, DMSITI tests
the wait bit in the saved I/0 o0ld PSW. If this bit 4is off, the
interruption was probably caused by a terminal (asynchronous) I/0
operation. DMSITI then returns control to the interrupted program by
loading the I/0 014 PSH.

If the wait bit is on, the interruption was probably caused by a
nonterminal (synchronous) I/0 operation. The program that initiated the
operation most likely called the DMSIOW function routine to wait for a
particular type of interruption (usually a device end). In this case,
DMSITI checks the pseudo-wait bit in the device table entry for the
interrupting device. If this bit is off, the system is waiting for some
event other than the interruption from the interrupting device; DMSITI
returns to the wait state by loading the saved I/0 o01d PSW. (This PSW
has the wait bit on.)

If the pseudo-wait bit is on, the system is waiting for an
interruption from that particular device. If this interruption is not
the one being waited for, DMSITI loads the saved I/0 0ld PSW. This will
again place the machine in the wait state. Thus, the program that is
waiting for a particular interruption will be kept waiting wuntil that
interruption occurs.

If the interruption is the one being waited for, DMSITI resets hoth
the pseudo-wait bit in the device table entry and the wait bit in the
I/0 o0ld PSWH. It then loads that PSW. This causes control to bLe
returned to the DMSIOW function routine, which, in turn, returns control
to the program that called it to wait for the interruption.

2-8 IBM VM/370 System Logic and Program Determination--vVolume 2

Terminal Interruptions

Terminal input/output interruptions are handled by the DMSCIT module.
A1l interruptions other than those containing device end, channel end,
attention, or unit exXception status are ignored. If device end status
is present with attention and a write CCW was terminated, its buffer is
unstacked. An attention interrupt causes a read +to be issued +to the
terminal, unless attention exits have been queuved via the STAX macro.
The attention exit with the highest priority is given control at each
attention until the queue is exhausted, then a read is issued. Device
end status indicates that the last I/0 operation has been completed. If
the last I/O operation was a write, the line is deleted from the output
buffer and the next write, if any, is started. If the 1last I/0
operation was a normal read, the buffer is put on the finished read list
and the next operation is started. If the read was caused by an
attention interrupt, the line is first checked for the commands RT, HOC,
BT, or HX, and the appropriate flags are set if one is found. Unit
exception indicates a canceled read. The read is reissued, unless it
had been issued with ATTREST=NO, in which case unit exception is treated
as device end.

Reader/Punch/Printer interruptions

Interruptions from these devices are handled by the routines that
actually issue the corresponding I/0 operations. When an interruption
from any ¢f these devices coccurs, coptrcl passes to DMSITI. Then DMSITI
passes control to DMSIOW, which returns contrcl to the routine that
issued the I/0 operation. This routine can then analyze the cause of
the interruption.

User-Controlled Device Interruptions

Interrupts from devices under user control are serviced the same as CMS
devices except that DMSIOW and DMSITI manipulate a user-created device
table, and DMSITI passes control to any user-written interrupt
processing routine that 1is specified in the nuser device table.
Otherwise, the processing program regains control directly.

Program Interruptions

The program interruption handler, DMSITP, <rTeceives control when a
program interruption occurs. When DMSITP gets control, it stores the
program o0l1d PSW and the contents of the registers 14, 15, 0, 1, and 2
into the program interruption element (PIE). (The routine that handles
the SPIE macro instruction has already placed the address of the program
interruption control area (PICA) into PIE.) DMSITP then determines
whether or not the event that caused the interruption was one of those
selected by a SPIE macro instruction. If it was not, DMSITP passes
control to the DMSABN abend recovery routine.

If the cause of the interruption was one of those selected in a SPIE
macro instruction, DMSITP picks up the exit routine address from the
PICA and passes control to the exit routine. Uron return from the exit
routine, DMSITP returns to the interrupted Frogram by loading the
original program check o01d PSW. The address field of the PSW was
nodified by a SPIE exit routine in the PIE.

CHS Introduction 2-9

External Interruptions

An external interruption causes control to be passed to the external
interrupt handler DMSITE. If the user has issued the HNDEXT macro to
trap external interrupts, DMSITE passes contrcl to the user's exit
routine. If the interrupt was caused by the timer, DMSITE resets the
timer and types the BLIP character at the terminal. The standard BLIP
timer setting 1is two seconds, and the standard BLIP character is
uppercase, followed by the lowercase (it moves the typeball without
printing). Otherwise, control is passed to the DEBUG routine.

Machine Check Interruptions

Hard machine check interruptions on the real processor are not reflected
to a CMS virtual user by CP. 1A message prints cn the console indicating
the failure. The user is then disabled and must IPL CMS again in order
to continue.

2-10 1BM VM/370 System Logic and Program Determination--Volume 2

Functional Information

The most important thing +to remember about CMS, from a debuggin
standpoint, is that it is a one-user system. The supervisor manages
only one user and keeps track of only one user's file and storage
chains. Thus, everything in a dump of a particular machine relates only
to that virtual machine's activity.

You should be familiar with register usage, save area structuring,
and control block relationships before attempting to debug or alter CHMS.

a Ilan

Register Usage

When a CMS routine is called, R1 must point to a valid parameter list
(PLIST) for that program. On return, RO may or may not contain
meaningful information (for example, on return from a call to FILEDEF
with no change, RO will contain a negative address if a new FCB has been
set up; othervise, a positive address of the already existing FCB). R15
will contain the return code, if any. The use of Registers 0 and 2
through 11 varies.

On entry to a command or routine called by SVC 202 the following are
in effect:

Register Contents

1 The address of the PLIST supplied by the caller.
12 The address entry point of the called routine.
13 The address of a work area (12 doublewords) supplied by
SVCINT.
14 The return address to the SVCINT routine.
15 The entry point (same as register 12).

On return from a routine, Register 15 contains:

Return

Code Meaning
Q No error occurred
<0 Called routine not found
>0 Error occurred

If a CMS routine is called by an SVC 202, registers 0 through 14 are
saved and restored by CMS.

Most CMS routines use register 12 as a base register.

Structure of DMISNUC

DMSNUC is the portion of storage in a CMS virtual machine that contains
system control blocks, flags, constants, and pointers.

The CSECTs in DMSNUC contain only symbolic references. This means
that an update or modification tc CMS, which changes a CSECT in DMS®UC,
does not automatically force all CMS modules to be recompiled. Only
those modules that refer to the area that was redefined must be
recompiled.

CMS Introduction 2-11

USERSECT (USER AREA)

The USERSECT CSECT defines space that is not wused by CHMS. A
modification or update to CMS can use the 18 fullwords defined for
USERSECT. There 3is a pointer (AUSER) in the NUCOF area to the user
space.

DEVTAB (DEVICE TABLE)

The DEVTAB CSECT is a table describing the devices available for the CHS
system. The table contains the following entries:

console
disks
reader
punch
printer
tapes

E o= O -

You can change some existing entries in DEVTAB. Fach device table
entry contains the following information:

Virtual device address

Device flags

Device types

Symbol device name

Address of the interrupt processing routine (for the console)

The virtual address of the console is defined at IPL time. The
virtual address of the user disks can be altered dynamically with the
ACCESS command. The virtual address of the tapes can ke altered in the
device table. Changing the virtual address of the reader, printer, or
punch will have no effect. Figure 2 describes the devices supported by
CMs.

Structure of CMS Storage

Figure 3 describes how CMS wuses its virtual storage. The pointers
indicated (MAINSTRT, MAINHIGH, FREELOWE, and FREEUPPR) are all found in
NUCON (the nucleus constant area).

The sections of CMS storage have the following uses:

e DMSNUC (X'00000' to approximately X'03000°). This area contains

pointers, flags, and other data updated by the various systea
routines.

e Low-Storage DMSFREE Free Storage Area (ApPfFroximately X'03000' to
X'0E000'). This area is a free storage area, from which reguests
from DMSFREE are allocated. The top part of this area contains the
file directory for the System Disk (SSTAT). If there is enough roonm
(as there will be in most cases), the FREETAB table also occupies
this area, just below the SSTAT.

2-12 IBM VM/370 System Logic and Program Determination--vVolume 2

e mam w—a m—— — e ——— —— M — - — D N mmme Gmtd . S m— WM mmm W mmm W e o — — - an - — i ———

1

Virtual | virtual | Symbolic | !

IBM Device | Addressi| Name | Device Type {

|

3210, 3215, 1052,1 ccu | Con't | System console I
3066, 3270 | | [I

2314, 3330, 3340 | 190 | DSKO | Svystem disk (read-only) |
3350 { { { {

2314, 3330, 3340 | 1912 | DSK1 | Primary disk (user files) |
3350 | | { |

2314, 2319, 3330, ccu 1 DSK2 | Disk (user files) 1
3340, 3350 | (| | t

2314, 2319, 3330, ccu | DSK3 | Disk (user files) |
3340, 3350 | | | ' |

2314, 2319, 3330, 192 } DSK4 | Disk (user files) i
3340, 3350 | i { i i

2314, 2319, 3330, ccu | DSK5 { Disk (user files) }
3349, 3350 { 1 | l

2314, 2319, 3330,1 ccu [DSK6 | Disk (user files) I
3340, 3350 | 1 | {

2314, 2319, 3330, ccu | DSK7 | Disk (user files) |
3340, 3350 i | | |

2314, 2319, 3330,1 198 | DSK8 | Disk (user files) {
3340, 3350 | (| |

2314, 2315, 3330, ccu i DSK9 i Disk {(user files) i
3340, 3350 | | | |

1403, 3203, 3211 | 00E ! PRN 1 | Line printer |
1443 | | | |

2540, 2501, 3505 | ¢0cC | RDR1 | Card reader {
2540, 3525 i 00D | PCH1 | Card punch |
2415, 2420, 3410, 181-4 | TAP1-TAPY4| Tape drives |
3420 | | R {

|

1The device addresses shown are those that are preassembled into the |
CMS resident device table. These need only be modified and a new |

device table made resident to change the addresses. |

2The virtual device address (ccu) of a disk for user files can be |
any valid System/370 device address, and can be specified by the i

CMS user when he activates a disk. If the user does not activate |

a disk immediately after loading CMS, CMS autcmatically activates I

the primary disk at virtual address 191. i

Figure 2. Devices Supported by a CMS Virtual Machine

Transient Program Area (X'OE000' +to X'1000C'). Since it is not
essential to keep all nucleus functions resident in storage all the
time, some of them are made "transient." This means that when they
are needed, they are loaded from the disk into the transient progranm
area. Such programs ®may not be longer than two pages, because that
is the size of the tramnsient area. (A page is 4096 bytes of virtual
storage.) All transient routines must be serially reusable since
they are not read in each time they are needed.

CMS Nucleus (X'10000' to X'20000°%). Segment 1 of storage contains
the reentrant code for the CMS Nucleus routines. In shared CHS
systems, this is the "protected segment,™ which must consist only of
reentrant code, and may not be modified under any circumstances.
Thus, suck functions as DEBUG breakpoints or CP address stops cannot
be placed in Segment 1 when it is a protected segment in a saved
systen.

CMS Introduction 2—13

e User Program Area (X'20000' to Loader Tables). User programs are
loaded into this area by the LOAD command. Storage allocated by
means of the GETMAIN macro instruction is taken froam this area,
starting from the high address of the user prograam. In addition,
this storage area can be allocated from the top down by DMSFREE, if
there is not enough storage available in the 1low DMSFREE storage
area. Thus, the usable size of the user program area is reduced by
the amount of free storage that has been allocated from it by

DMSFREE.

® Loader Tables (Top pages of storage). The top of storage is occupied
by the 1locader tables, which are required by the CMS 1loader. These
tables indicate which modules are currently 3lcaded in the user
program area (and the transient program area after a LOAD command).
The size of the loader tables can be varied by the SET LDRTBLS
command. However, to successfully change the size of the loader

tables, the SET LDRTBLS command must be issued immediately after IPL.

Free Storage Management

Free storage can be allocated by issuing the GETMAIN or DMSFREE macros.
Storage allocated by the GETMAIN macro is taken from the user progranm
area, beginning after the high address of the user program.

Storage allocated by the DMSFREE macro can be taken from several
areas.

If possible, DMSFREE requests are allocated from the low address free
storage area. Otherwise, DMSFREE requests are satisfied from the
storage above the user program area.

There are two types of DMSFREE requests for free storage: requests
for USER storage and NUCLEUS storage. Because these two types of
storage are kept in separate 4K pages, it is possible for storage of one
type to be available in low storage, while no storage of the other type
is available.

GETMAIN FREE STORAGE MANAGEMENT

All GETMAIN storage is allocated in the user program area, starting
after the end of the user's actual program. Allocation begins at the
location pointed to by the NUCON pointer MAINSTRT. The 1location
BMAINHIGH in NUCON is the "high extend" pointer for GETMAIN storage.

Before issuing any GETMAIN macros, user programs must use the STRINIT
macro to set up user free storage pointers. The STRINIT macro is issued
only once, preceding the initial GETMAIN request. The format of the
STRINIT macro is:

t l ¢ r 1
(label] | STRINIT | |TYPCALL=|SYC |
| i1 | BALR{
I |t L 3

— -

[P |

-
|
!
|
|
i |

r--

2-14 1IBM VM/370 System Logic and Prcgram Determination--Volume 2

where:

r h}
TYPCALL=|SYC |

| BALR|]

L 4
indicates how control is passed to DMSSTG, the routine that
processes the STRINIT Racro. Since DMSSTG is a

nucleus-resident routine, other nucleus-resident routines can
branch directly to it (TYPCALL=BALR) while routines that are
not nucleus-resident must use linkage SVC (TYPCALL=SVC). If no
operands are specified, the default is TYPCALL=SVC.

When the STRINIT macro is executed, both MAINSTRT and MAIRHIGH are
ipitialized to the end of the user's program, in the user program area.
As storage 1is allocated from the user program area to satisfy GETHMAIN
requests, the MAINHIGH pointer is adjusted upward. Such adjustments
are alvays in multiples of doublewords, so that this pointer is always
on a doubleword boundary. As the allocated storage is released, the
MAINHIGH pointer is adjusted downward.

The pointer MAINHIGH can never be higher than FREELOWE, the "low
extend" pointer for DMSFREE storage allocated in the user program area.
If a GETMAIN request cannot be satisfied without extending MAINHIGH
above FREELOWE, then GETMAIN will take an error exit, indicating that
insufficient storage is available to satisfy the request.

The area between MAINSTRT and MAINHIGH may contain blocks of storage
that are not allocated and that are, therefore, available for allocation
by a GETMAIN instruction. These blocks are chained together, with the
first one pointed to by the NUCON location MAINSTRT. Refer to Figure 3
for a description of CMS virtual storage usage.

The format of an element on the GETHMAIN free element chain 1is as
follovs:

v v .
FREPTR —-- pointer to next free
element in the chain, or 0
if there is no next element
i { |
FRELEN -- length, in bytes, of
this element

0(0)

4 (u4)

{ | 1
Remainder of this free element

LY e e
§ e e et e n W o o w—

When issuing a variable-length GETMAIN, two and one-half pages are
reserved for CHMS usage; this is a design value. A user who needs
additional reserved pages (for example, for larger directories) should
free up some of the variable GETMAIN storage froam the high end.

CMS Introduction 2-15

VIRTUAL
STORAGE

END OF STORAGE

System Loader Table (Size determined

by SET LDRTBLS command) Storage Key = X'F*

FREEUPPR

FREELOWE

L

MAINHIGH

MAINSTRT

DMSFREE requests when
no more fow storage available Storage

Unused portion of User
Program Area

Siwaye Key A'E

Storage
Key = X'E’

The User's Program
{program is loaded via the
LOAD command)

Storage Key = X'E’

X’20000"

CMS Nucleus
in *“saved systems’ this area
is a protected segment -
(that is, all code must be s
reentrant and cannot be
modified)
Storage Key = X'F"

X'E000

Transient Program Area

Storage Key = X'E’ [

Low Storage DMSFREE Free Storage Area
DMSFREE requests are filled from
this area. The upper part of this
area contains the System Disk MFD
followed by the FREETAB, if there is
enough room.
Storage Key = X’E’ or X'F*

X0

DMSNUC
System Control Blocks, flags, constants,
and pointers.

Storage Key = X'F'*

*The half-page containing OPSECT and TSOBLOKS
has a storage key = X'E’

Figure 3.

2-16 1IBM VM/370 System Logic and Program Determination--vVolume 2

CMS storage Map

CONTROL BLOCKS
IN FREE STORAGE =

DECB LDARST AFT
CMSSAVE CcMscB FSTB
DMSNUC

SUBSECT

TSOBLKS

OPSECT

DMSABW

DMSFRT

DMSERT

DBGSECT

CVTSECT

Fvs

DIOSECY

SVCSECT

PGMSECT

I0SECT

EXTSECT

AFTSECT

ADTSECT

DEVTAB

Terminal Buffer and Saveareas

SYSREF

MACDIRC and TXTDIRC

NUCON

seimnmac

4RS00

X'2AD8’

X'2A40'

X"2980°

X'2800°

X'2350°

X'2300°

X'2180°

X'1DDO’

x'1ccs’

X'1AD8’

X'19E8"

X'1748°

X'1680"

X'1620°

X'1550"

X'1200"

X'DFO’
X'C90"
X'700
X'600"
X‘2E0

DMSFREE FREE STORAGE MANAGEMENT

The DMSFREE macro allocates CMS free storage. The format of the DMSFREE
macro is:

| h
| { | r 1 |
i [label] | DMSFREE | DEORDS={ n } |,HIN={ n }I |
i | | 0y f i (N fi |
| | | L 4 [
| | I r r 11 r r 11 |
| | ! |,TYPE={USER i1 |,ERR=|1laddri| i
| i Pt {NUCLEUS|{| | 1 * |1 |
] | | v L 13 L L 11 i
| t t r r o r 11 {
! [{ |,AREA=|{LOW || |,TYPCALL=|SYC || I
| | (N {HIGH|I | {BALRI | {
i | |t L 34 L L 13 |
i]
¥Where:

label

is any valid assembler language label.

DWORDS=(n }
1(0)
is the number of doublewords of free storage requested.
DRORDS=n specifies the number of doublevwords directly and
DWORDS= (0) indicates that register 0 contains the number of
doublevwords requested.

=)

indicates a variable regquest for free sterage. If the exact
pumber of doublewords indicated by the DWORDS operand is not
available, then the largest block of storage that is greater
than or equal to the minimum is returned. MIN=n specifies the
minimum number of doublewords of free storage directly while
MIN=(1) indicates that the minimum is in register 1. The
actual amount of free storage allocated 1is returned to the

requestor via gemeral register 0.

r b
TYPE=|USER |
| NUCLEUS|
L K
indicates the type of CMS storage with which this request for
free storage is filled: USER or EUCLEUS.

r q
ERR=|laddrl
P x|
L F]
is the return address if any error occurs. "laddr" is any
address that can be referred to in an LA (load address)
instruction. The error return is taken if there is a macro
ccding error or if there is not enough free storage available
to fill the request. If the asterisk (*) is specified for the
return address, the error return is the same as a normal
return. There is no default for this operand. If it 1is
omitted and an error occurs, the system will abend.

CHS Introduction 2-17

r a
AREA={LOW |

| HIGH|

L 4
indicates the area of CMS free storage from which this request
for free storage is filled. LOW indicates the low storage
area Letween DMSNUC and the +transient pProgram area. HIGH
indicates the area of storage between the user program area
and the CMS loader tables. If AREA is not specified, storage
is allocated wherever it is available.

1

{

|

J

indicates how control is passed to DMSFREE. Since DMSFREE is
a nucleus-resident routine, other nucleus-resident routines
can branch directly to it (TYPCALL=BALR) while routines that
are not nucleus-resident must use linkage SVC (TYPCALL=SVC).

i

TYPCALL=|SVC
| BALR
| 8

The pointers FREEUPPR and FREELOWE in NUCON indicate the amount of
storage that DMSFREE has allocated from the high portion of the user
pProgram area. These pointers are initialized to the teginning of the
loader tables.

The pointer FREELOWE is the "low extend" pointer of DMSFREE storage
in the user program area. As storage is allocated from the user program
area to satisfy DMSFREE requests, this pointer will be adjusted
downward. Such adjustments are always in multiples of 4K bytes, so that
this pointer is always on a 4K boundary. As the allocated storage is
released, this pointer is adjusted upward.

The pointer FREELOWE can never be lower than MAINHIGH, the "high
extend"™ pointer for GETMAIN storage. If a DMSFREE request cannot be
satisfied without extending FREELOWE below MAINHIGH, then DMSFREE will
take an error exit, indicating that storage is insufficient to satisfy
the request. Figure 3 shows the relationship of these storage areas.

The FREETAB free storage table is kept in free storage, usually in
lov storage, Jjust below the Master File Directory for the System Disk
(S-disk). However, the FREETAB may be located at the top of the user
Program area. This table contains one byte for each page of virtual
storage. Each such byte contains a code indicating the use of that page
of virtual storage. The codes in this table are as follows:

Code Heaning

USERCODE (X'01') The page is assigned to user storage.

NUCCODE (x'02') The page is assigned to nucleus storage.

TRNCODE (Xx'03') The page is part of the transient Program area.

USARCODE (X'04") The page is part of the user Frogram area.

SYSCODE (X'05') The page is none of the above. The page is assigned
to system storage, systenm code, or the loader
tables.

Other DNSFREE storage pointers are maintained in the DMSFRT CSECT, in
NUCON. The four chain header blocks are the most important fields in
DMSFRT. The four chains of unallocated elements are:

2-18 1IBM VM/370 System Logic and Program Determination--Volume 2

For each

The low storage nucleus chain
The low stcrage user chain

The high storage nucleus chain
The high storage user chain

of these chains of unallocated elements, there is a control

block consisting of four words, with the following format:

POINTER

KON

MAX

FLAGS

r T Ll L]

| POINTER -- pointer to the first
0(0) | free element on the chain, or

| zero, if the chain is empty.
l
|

|
|
|
| { } |

NOUM -- the number of elements on |
1

|

|

4| the chain.
(
{ I l 1 I
| MAX —— a value eqgual to or greater|
8(8) | thkan the size of the largest |
| element. |
| | | { {
| PLAGS- | SKEY - | TCODE -| Unused |
12 (C) {Flag |Storage |FREETAB | {
i byte | key i code |} {
L i 1 L J

points to the first element on this chain of free elements.
If there are no elements on this free chain, then the POINTER
field contains all zeros.

contains the number of elements on this chain of free
elements. If there are no elements on this free chain, then
this field contains all zeros.

is used to avoid searches that will fail. It contains a
number not exceeding the size, in bytes, of the largest
element on the free chain. Thus, a search for an element of a
given size will not be made if that size exceeds the MAX
field. However, this number may actually be larger than the

2aCalle

size of the largest free element on the chain.
The following flags are used:

FLCLN (X'80') -- Clean-up flag. This flag is set if the chain
must be updated. This will be necessary in the following
circuastances:

e If one of the two high storage chains contains a 4K page to
which FREELOWE points, then that page can be removed froa
the chain, and FREELOWE can be increased.

e 1All completely unallocated 4K pages are kept on the user
chain, by convention. Thus, if one of the nucleus chains
(lov storage or high storage) contains a full page, then
this page must be transferred to the corresponding user

chain.
FLCLB (X'40') -- Destroyed flag. Set if the chain has been
destroyed.
FLEC (X'20') -- High storage chain. Set for both the nucleus

and user high-storage chains.

CMS Introduction 2-19

FLNU (X'10') -- Nucleus chain. Set for both the low storage
and high storage nucleus chains.

FLPA (X'08') -- Page available. This flag is set if there is
a full 4K page available on the chain. This flag may be set
even if there is no such page available.

SKEY contains the cone-byte storage key assigned to storage on this
chain.

TCODE contains the one-byte FREETAB table cocde for storage on this
chain.

Allocating User FPree Storage

When DMSFREE with TYPE=USER (the default) is called, one or more of the
following steps are taken in an attempt to satisfy the request. As soon

as one of the following steps succeeds, then user £ree storage

allocation processing terminates.

1. Search the lov storage user chain for a block of the required size.
2. Search the high storage user chain for a block of the required
size.

3. Extend high storage user storage downward into the user progranm
area, modifying FREELOWE in the process.

4. For a variable request, put all available storage in the user
program area onto the high storage wuser chain, and then allocate
the largest block available on either the high storage user chain
or the 1low storage user chain. The allocated block will not be
satisfactory unless it is larger than the minimum requested size.

Allocating Nucleus Free Storage

When DMSFREE with TYPE=NUCLEUS is called, the fcllowing steps are taken
in an attempt to satisfy the request, until one succeeds:

1. Search the 1low storage nucleus chain for a block of the required
size.

2. Get free pages from the 1low storage user chain, if any are
available, and put them on the low storage nucleus chain.

3. Search the high storage nucleus chain for a block of the required
size.

4. Get free pages from the high storage user chain, if they are
available, and put them on the high storage nucleus chain.

5. Extend high storage nucleus storage dovnward into the User Progranm
Area, modifying FREELOWE in the process.

6. For variable regquests, put all available pages from the user chains
and the user program area onto the nucleus chains, and allocate the
largest block available on either the low storage nucleus chains,
or the high storage nucleus chains.

2-20 IBM VM/370 System Logic and Program Determination--Volume 2

Releasing Storage

The DMSFRET macro releases free storage previously allocated with the
CMSFREE macro. The format of the DMSFRET macro is:

| 1
| {label] | DMSFRET | DWORDS=({ n },LOC='ladﬁr‘ t
! ! | (0) { N } |
1 | Il r r T r 11 1
| i | |,ERR=|laddr]| |,TYPCALL={3S¥C 1| i
{ i I Io* 1t | BALR} | |
l | | L L 11 L | 8 43 |
[J
Where:

label is any valid Assembler language label.

DHORDS={ n is the number of doublewords of storage to be released.
(0)} DWORDS=n specifies the number of doublewords directly and
DWORDS=(0) indicates that register 0 contains the number

of doublewords being released.

(1) nladdr" is any address that can be referred to in an LA
{load address) instruction. LOC=laddr specifies the
address directly while LOC=(1) indicates the address is
in register 1.

LOC={1addr} js the address of the block of storage being released.

r 1

ERR=|laddr| is the return address if an error occurs. "laddr" is any
| * | address that can be rTeferred to ty an LA (load address)
L 4 instruction. The error return is taken if there is a

macro coding error or if there is a probleam returning the
storage. If an asterisk (*) is specified, the error
return address is the same as the normal return address.
There is no default for this operand. If it is omitted
and an error occurs, the system will abend.

g]
TYPCALL=|SVC | indicates how control is passed to DMSFRET. Since DMSFRET
IBALR| is a nucleus-resident routine, other nucleus-resident
L J routines can branch directly to it (TYPCALL=BALR) while
routines that are not nucleus-resident aust use SVC
linkage (TYPCALL=SVC).

When DMSFRET is called, the block being released is placed on the
appropriate chain. At that point, the final update operation is
performed, if necessary, to advance FREELOWE, or to move pages from the
nacleus chain to the corresponding user chain.

Similar update operations will be performed, when necessary, after
calls to DMSFREE, as well.

RELEASING ALLOCATED STORAGE

Storage allocated by the GETMAIN macro instruction may be released in
any of the following ways:

1. A specific block of such storage may be released by means of the
FREEMAIN macro instruction.

CMS Introduction 2-21

2. The STRINIT ®macro instruction releases all storage allocated by
any previous GETMAIN requests.

3. Almost all CMS cosmands issue a STRINIT macro instruction. Thus,
executing almost any CMS command will cause all GETHAIN storage to
be released.

Storage allocated by the DMSFREE macro instruction may be released in.
any of the following ways:

1. A specific block of such storage may be released by means of the
DMSFRET macro instruction.

2. Whenever any user routine or CHMS command abnormally terminates (so
that the routine DMSABN is entered), and the abend recovery
facility of the system is invoked, all DMSFREE storage with
TYPE=USER is released automatically.

Excepl 1in the case of abend fecovery, storage allocated by the
DMSFREE =macro is never released automatically by the system. - Thus,
storage allocated by means of this macro instruction should always be
released explicitly by means of the DMSFRET macro instruction.

DMSFREE SERVICE ROUTINES

The DMSFRES macro instruction is used by the system to request certain
free storage management services.

The format of the DMSFRES macro is:

r 1
| [label] | DMSFRES | INIT1 r 11]
] | | INIT2 |{,TYPCALL=|SVC || |
| f | CHECK | IBALRY} | |
| i | CKON L L 11 I
I I | CKOFF i
! I | UREC |
l f | CALOC 1
L
where:

label is any valid Asseabler language label.

INIT1 invokes the first free storage initialization routine, so

that free storage requests can be made to access the
system disk. Before INIT1 is invoked, no free storage
requests may be made. After INIT1 has been invoked, free
storage requests mnmay be made, but these are subject to
the following restraints until the second free storage
management initialization routine has been invoked:

e 111 requests for USER type storage are changed to
requests for NUCLEUS type storage.

¢ Error checking is 1limited before initialization is

complete. In particular, it is sometinmes possible to
release a block that was never allocated.

2-22 1BM VM/370 System Logic and Program Determination--vVolume 2

INIT2

CHECK

CKON

CKOFF

UREC

CALOC

e All requests that are satisfied in high storage must
be of a temporary nature, since all storage allocated
in high storage is released when the second free
storage initialization routine is invoked.

When CP's saved system facility is used, the CHMS system
is saved at the point just after the A-Disk has been made
accessible. It is necessary for LCMSFRE to be used before
the size of virtual storage is known, since the saved
system can be used on any size virtual machine. Thus,
the first initialization routine initializes DMSFRE so
that limited functions can be requested, while the second
initialization routine performs the initjalization
necessary to allow the full functions of DNSFRE to be
exercised.

invokes the second initialization routine. This routine
is invoked after the size of virtual storage 1is known,
and it performs initialization necessary to allow all the
functions of DMSFRE to be used. The second
initialization routine performs the following steps:

e Releases all storage‘that has been allocated 1in the
high storage area.

¢ 1Allocates the FREETAB free stcrage table. This table
contains one byte for each 4K page of virtual storage,
and so cannot be allocated until the size of virtual
storage is known.

e The FREETAB table is initialized, and all storage
protection keys are initialized.

e 111 completely unallocated UK pages on the low storage
nucleus free storage chain are removed to the user
chain. Any other necessary operations are perforeed.

invokes a routine that checks all free storage chains for
consistency and correctness. Thus, it checks to see
whether or not any free storage pointers have been
destroyed. This option can be used at any time for
system debugging.

turns on a flag that causes the CHECK routine to be
invoked each time a call is made to DMSFREE or DMSFRET.
This can be useful for debugging purposes (for example,
when you wish to identify the routine that destroyed free
storage management pointers). Care should be taken when
using this option, since the CHECK routire is coded to be
thorough rather than efficient. Thus, after the CKCN
option has been invoked, each call to DMSFREE or DMSFRET
will take much longer to be completed than before.

turns off the flag that was turned on by the CKON option.

is used by DMSABN during the abend recovery process to
release all user storage.

is used by DMSABN after the abend recovery process has
been completed. It invokes a routine which returns, in
register 0, the number of doublewords of free storage
that have been allocated. This number is used by DMSAEN
to determine whether or not the abend recovery has been
successful.

CMS Introduction 2-23

r]
TYPCALL=|SVC | indicates how control is passed to DMSFES. Since DMSFRES
|BALR| is a nucleus-resident routine, other nucleus-resident
L 4 routines can branch directly to it, (TYPCALL=BALR) while
routines that are not nucleus-resident must use SVC
linkage (IYPCALL=SVC) .

ERROR CODES FROM DMSFRES, DMSFREE, AND DMSFRET

A nonzero return code upon return from DMSFRES, DMSFREE, or DMSFRET
indicates that the request could not be satisfied. Register 15 contains
this return code, indicating which error has occurred. The following
codes apply tc the DMSFRES, DMSFREE, and DMSFRET macros.

Code Error
1 (DNSFREE) Insufficient storage space is available to satisfy

the request for free storage. In the case of a variable
request, even the minimum request could not be satisfied.

2 (DESFREE or DMSFRET) User storage pointers destroyed.

3 (DMSFREE, DMSFRET, or DMSFRES) Nucleus storage rointers
destroyed.

4 (DMSFREE) An invalid size was requested. This error exit is

taken if the requested size is not greater than zero. 1In the
case of variable requests, this error exit is taken if the
minimum request is greater than the maximum request.
(However, the latter error is not detected if DMSFREFE is able
tc satisfy the maximum request.)

5 (DMSFRET) An 1invalid size was passed +to the DMSFRET macro.
This error exit is taken if the specified 1length is not
positive.

6 (DMSFRET) The block of storage that is being released was

never allocated by DMSFREE. Such an error is detected if onpe
of the following errors is found:

e The block does not 1lie entirely inside either the 1low
storage free storage area or the user pProgram area between
FREELOWE and FREEUPPR.

e The block crosses a page boundary that separates a page
allocated for USER storage from a Page allocated for
NUCLEUS type storage.

e The block overlaps another block already on the free
storage chain.

7 (DMSFRET) The address given for the tlock being released is
not doubleword aligned.

8 (DMSFRES) An invalid request code was passed to the DMSFRES
routine. Since all request codes are generated by the DMSFRES
macro, this error code should never appear.

9 (DMSFREE, DMSFRET, or DMSFRES) Unexfpected and unexplained
error in the free storage management rcutine.

2-24 IBM VM/370 System Logic and Frogram Determination--Volume 2

CMS HANDLING OF PSW KEYS

The purpose of the CMS Nucleus protection scheme is to protect the CHMS
nucleus from inadvertent destruction by a user program. Without it, it
wonld te possible, for example, for a FORTRAN user who accidentally
assigns an incorrectly subscripted array element to destroy nucleus
code, wipe out a crucial table or constant area, Or evel destroy an
entire disk by destroying the contents of the master file directory.

In general, user programs and disk-resident CMS commands are executed
with a PSW key of X'E', while nucleus code is executed with a PSW key of
X'0'.

There are, however, some eXxceptions to this rule. Certain
disk-resident CMS commands run with a PSW key of X'0', since they have a
constant need to modify nucleus pointers and storage. The nucleus
routines called by the GET, PUT, READ, and WRITE macros run with a user
PSW key of X'E', to increase efficiency.

TWO macros are available to any routine that wishes to change its PSW
key for some special purpose. These are the DMSKEY macro and the DMSEXS
macro.

The DMSKEY macro may be used to change the PSW key to the user value
or the nucleus value. The DMSKEY NUCLEUS option causes the current PSW
key to be placed in a stack, and a value of 0 to be placed in the PSW
key. The DMSKEY USER option causes the current PSW key to be placed in
a stack, and a value of X'E' to be placed in the PSW key. The DHSKEY
RESET option causes the top value in the DMSKEY stack to be removed and
re-inserted into the PSW.

It is a requirement of the CMS system that when a routine terminates,
the DMSKEY stack must be empty. This means that a routine should
execute a DMSKEY RESET option for each DMSKEY NUCLEUS option and each
DMSKEY USER option executed by the routine.

The DMSKEY key stack has a current maximum depth of seven for each
routine. In this context, a "routine"™ is anything invoked by an S¥VC
call.

The DMSKEY LASTUSER option causes the current PSW key to be placed in
the stack, and a nev key inserted into the PSW, determined as follows:
the SVC system save area stack is searched in reverse order (top to
bottom) for the first save area corresponding to a user routine. The
PSW key that was in effect in that routine is then taken for the new PSH
key. (If no user routine is found in the search, then LASTUSER has the
same effect as USER.) This option is used Lty OS macro simulation
routines when they wish to enter a user-supplied exit routine; the exit
routine is entered with the PSW key of the last user routine on the SVC
system save area stack.

The NOSTACK option of DMSKEY may be used with NUCLEUS, USER, or
LASTUSER (as in, for example, DMSKEY NUCLEUS,NOSTACK) if the current key
is not to be placed on the DMSKEY stack. If this option is used, then
no corresponding DMSKEY RESET should be issued.

The DMSEXS ("execute in system mode") macro instruction is useful in
situations where a routine is being executed with a user protect key,
but wishes to execute a single instruction that, for example, sets a bit
in the NUCON area. The single instruction may be specified as the
argument to the DMSEXS macro, and that instruction will be executed with
a system PSW key.

CMS Introduction 2-25

Whenever possible, CMS commands are executed with a user protect key.
This protects the CMS Nucleus in cases where there is an error in the
system command that would otherwise destroy the nucleus. If the command
must execute a single instruction or small group of instructions that
modify nucleus storage, then the DMSKEY or DMSEXS macros are used, so
that the system PSW key will be used for as short a period of time as is
possible.

CMS SVC HANDLING

DMSITS (INTSVC) is the CMS system SVC handling routine. The general
operation of DMSITS is as follows:

1. The SVC new PSW (low storage location X'60') contains, in the
address field, the address of DMSITS1. The DMSITS module will be
entered whenever a supervisor call is executed.

2. DMSITS allocates a system and user save area. The user save area
1s used as a register save area (or work area) by the called
routine.

3. The called routine is called (via a LPSW or EALR) .
4. Upon return from the called routine, the save areas are released.

5. Control is returned to the caller (the routine that originally made
the SVC call).

SVC TYPES AND LINKAGE CONVENTIONS

SVC conventions are important to any discussion of CHNS because the
system is driven by SVCs (supervisor calls). SVCs 202 and 203 are the
most common CMS SVCs.

S5VC 202 is used both for calling nucleus-resident routines, and for
calling routines writtem as commands (for example, disk resident
nodules). '

A typical coding sequence for an SVC 202 call is the following:

La R1,PLIST
SVC 202
DC ALY (ERRADD)

Whenever SVC 202 is called, register 1 must point to a parameter list
(PLIST). The format of this parameter 1list depends upon the actual
routine or command being called, but the SVC handler will examine the
first eight bytes of this parameter list to find the name of the routine
or command being called.

The "DC ALY (address)" instruction following the SVC 202 is optional,
and may be omitted if the programmer does not expect any errors to occur
in the routine or command being called. TIf included, an error return is
made to the address specified in the DC. DMSITS deteramines vhether this
DC was inserted by examining the byte following the SVC call inline. &
nonzero byte indicates an instruction, a zero value indicates that "pcC
AL4 (address)" follows.

2-26 IBM VM/370 System Logic and Program Determination--Volume 2

svc 203

SVC 203 is called by CMS macros to perform various internal systenm
functions. It is used to define SVC calls for which no parameter list
is provided. For example, DMSFREE parameters are passed in registers 0
and 1.

A typical calling sequence for an SVC 203 call is as follows:

SvC 203
DC H'code!

The halfword decimal code following the SVC 203 indicates the
specific routine being called. DMSITS examines this halfword code,
taking the absolute value of the code by an LPR instruction. The first
byte of the result is ignored, and the second byte of the resulting
halfword is used as an index to a branch table. The address of the
correct routine is loaded, and ccntrol is transferred to it.

It is possible for the address in the SVC 203 index table to be -zero.
In this case, the index entry will contain an 8-byte routine or comamand
name, which will be handled in the same way as the 8-byte name passed in
the parameter list to an SVC 202.

The programmer indicates an error return by the sign of the halfword
code. If an error return is desired, then the ccde is negative. If the
code is positive, then no error return is made. The sign of the
halfword code has no effect on determining the routine that is to be
called, since DHSITS takes the absolute value of the «code tc determine
the routine called.

Since only the second byte of the absolute value of the code is
examined by DMSITS, seven bits (bits 1-7) are available as flags or for
other uses. Thus, for example, DMSFREE uses these seven bits to
indicate such things as conditional requests and variable regquests.

When an SVC 203 is invoked, DMSITS stores the halfword code into the
NUCON location CODE203, so that the called routine can examine the seven
bits made available to it.

A1l calls made by means of SVC 203 should be made by macros, with the
macro expansion computing and specifying the correct halfword code.

User—Handled SVCs

The programmer may use the HNDSVC macro to specify the address of a
routine that will handle any SVC call other than for SVC 202 and SVC
203.

In this case, the 1linkage conventions are as required by the
user-specified SVC-handling routine.

0S and DOS/VS Macro Simulation SVC Calls

CMS supports selected SVC calls genmerated by OS and DCS/VS macros, by
simulating the effect of these macro calls. DHSITS is +the initial SVC
interrupt handler. If the SET DOS command has been issued, a flag in
NUCON will indicate that DOS/VS macro simulation is to be used. Control
is then passed to DMSDOS. Otherwise, 0S macro simulation is assumed and
DMSITS passes contrcl tc the appropriate 0S simulation routine.

CMS Introduction 2-27

Invalid S¥VC Calls

There are several types of invalid SVC calls recognized by DMSITS.

1. Invalid SVC number. If the SVC number does not fit into any of the
four classes described above, then it is not handled by DMSITS. &an
appropriate error message is displayed at the terminal, and control
is returned directly to the caller.

2. Invalid routine name in SVC 202 parameter 1list. If the routine
named in the SVC 202 parameter list is invalid or cannot be found,
DMSITS handles the situation in the same way as it handles an error
return from a legitimate SVC routine. The error code is -3.

3. 1Invalid SVC 203 code. If an invalid code follows SVC 203 inline,
then an error message is displayed, and the abend routine is called
to terminate execution.

When a program issues SVC 202, passing a routine or command name in the
parameter list, then DMSITS must be searched for the specified routine
or command. (In the case of SVC 203 with a zerc in the tatle entry for
the specified index, the same logic must be applied.)

The search algorithm is as follows:

1. A check is made to see if there is a routine with the specified
name currently occupying the system transient area. If this is the
case, then control is transferred there.

2. The system function name table is searched, to see if a command by
this name is a nucleus-resident command. If the search is
successful, control goes to the specified nucleus routine.

3. A search is then made for a disk file with the specified name as
the filename, and MODULE as the filetype. The search is made in
the standard disk search crder. If this search is successful, then
the specified module is 1loaded (via the LOADMOD command), and
control passes to the storage location now occupied by the command.

4. If all searches so far have failed, then DMSINA (AEBREV) 1is called,
to see if the specified routine name is a valid system abbreviation
for a system command or function. User-defined abbreviations and
synonyms are also checked. If +this search is successful, then
steps 2 through 4 are repeated with the full function name.

5. If all searches fail, then an error code of -3 is issued.

Commands Entered from the Termipal

When a command is entered from the terminal, DMSINT processes the
command line, and calls the scan routine to convert it into a parameter
list consisting of eight-byte entries. The following search is
performed:

1. DHMSINT searches for a disk file whose filename is the command name,

and whose filetype is EXEC. If +this search is successful, EXEC is
invoked to process the EXEC file.

2-28 1IBM VM/370 System Logic and Program Determination--Volume 2

If not found, the command name is considered to be an abbreviation
and the appropriate tables are examined. If found, the abbreviation
is replaced by its full equivalent and the search for an EXEC file
is repeated.

2. If there is no EXEC file, DMSINT executes S¥C 202, passing the
scanned parameter 1list, with the command name in the first eight
bytes. DMSITS will perform the search described for sSvC 202 in an
effort to execute the command.

3. TIf DMSITS returns to DMSINT with a return code of -3, indicating
that the search was unsuccessful, then DMSINT uses the CP DIAGNOSE
facility to attempt to execute the command as a CP command.

4. If all of these searches fail, then DMSIRT displays the error
message UNKNOWN CP/CMS COMMAND.

See Figure 4 for a description of this search for a command name.

USER AND TRANSIENT PROGRAM AREAS

Two areas can hold programs that are loaded from disk. These are called
the user program area and the transient program area. (See Figure 3 for
a description of CMS storage usage.) A summary of CP, CMS. IPCS, and
RSCS modules and their attributes, including whether they reside in the
user program area or the transient area is contained in the IBM/370:
Release 5 Guide.

The user program area starts at location X'20000' and extends upward
to the loader tables. Generally, all user programs and certain system
commands (such as EDIT, and COPYFILE) are executed in the user prograsms
area. Since only one program can be executing in the user prograa area
at any one time, it is impossible (vithout unpredictable results) for
one program being executed .in the user program area to invoke, by means
of SYC 202, a module that is also intended to re executed im the user
program area.

The transient program area is two pages lomng, extending from location
X'EQ00' to location X'FFFF'. It provides an area for system commands
that may also be invcked from the user program area by means of an S¥C
202 call. When a transient module is calied by an SVC, it is normally
executed with the PSW system mask disabled for 1I/0 and external
interrupts.

The transient program area is also used to handle certain OS macro
simulation SVC calls. 0S SVC «calls are handled by the IS simulaticn
routines located either in the CMSSEG discontiguous shared segment or in
the user program area, as close to the loader tables as possible. If
DMSITS cannot find the address of a supported 0S SVC handling routine,
then it loads the file DMSSVT MODULE into the transient area, and lets
that routine handle the SVC.

A program being executed in the transient program area may not invoke
another program intended for execution in the transient program area,
including 0S macre simulation SVC calls that are handled by DMSSVYT. For
example, a program being executed in the transient program area may not
invoke the RENAME command. In addition, it may not invoke the OS macro
WTO, which generates an SVC 35, which is handled by DMSSVT.

DMSITS starts the programs to be executed in the user program area
enabled for all interrupts but starts the programs to be executed in the
transient program area disabled for all interrupts. The individual
program may have to use the SSM (Set System Mask) instruction to change
the current status of its system mask.

CMS Introduction 2-29

User enters

name 2t

terminal

O

Read line
from terminal
{“name..."

Now in Effect
INote 1}

Yes

Name is now
the real name
from a
Synonven
Tabte

Figure 4.

#

Does fite
“name EXEC™
exist

s

name a
Synonym or
abbreviation
for some real name

Expand Line by
inserting the
command name
EXEC to
EXEC name

3VC 202 name

Issue SVC 202
{See the SVC 202
Subroutine!

Implied
CP now
n effect
{Note 3}

Name 1s now the
real name from the
Synonym Table

Pass fine
e cP
for processing

Is
name
now in transient
area

name a
nucleus
function

Arempe 1o execute
LOADMOD name
MODULE from disk

Was
the LOADMOD
successtul

1s name
an abbreviation
or Synonym for
some real name

Pass control 1o the
routine {in the nucteus.
transient area, or

user area) to execute
the command

SetRC =3

Upen completion,
return to SVC routine

Display
UNKNOWN
CP CMS

COMMAND

Display Ready
message with
error code if
RC -0

Was.
command
found anc

CMS Command (and Request) Processing

Return to routine that'
sssued the SVC 202

Notes

. 1f the terminal line was actually from

an EXEC file, or if the

command SET IMPEX OFF has been executed, implied EXEC

is not in effect.

~N

the command.

w

A -3 return code indicates SVC 202 processing did not find

. 1f the terminal line was actually from an EXEC file, or if the

command SET IMPEX OFF has been executed, implied CP

is not in effect.

2-30 1IBM VM/370 System Logic and Program Determination--Volume 2

CALLED ROUTINE START-UP TABLE

Figures 5 and 6
called routine is

show how
entered.

the PSW and

registers are

set up

when the

nCalled” Type

System Mask

Storage Key

Problem Bit

r
|
|
|

| | 1
| | |
SYc 202 or 203 | Disabled i Systen ! off
| - Nucleus { { i
{ resident | | i
i | 1 {
{SvC 202 or 203 | Disabled | User i off
{ - Transiemt |] |
| area MODULE | | §
{ - | | |
1SVC 202 or 203 | Enabled | User | off
| - User area | 1 i
| I | |
|User—handled | Enabled | User { off
| | | |
{0S - DOS/VS | Disabled | Systen | Ooff
{ Nucleus i H |
| resident | | |
| | i |
0S - DOS/VS { Dizabled | Systen { off
| | |
| | i

|

! Transient

| area module
1

_
i
|
1
|
|
!
|
1
|
|
i
|
|
|
!
1
|
i
1
|
|
|

Figure 5.

PSW Fields When Called Routine Starts

A

lRegisterisegisters]Register

1

lRegisterlRegisterlRegisterl

|

| Type | 0 - 1 1 2 - 11 | } 13 | 14 | 15 i
| | | | | | | |
|SVC 2021Same as |Unpre- {Address |User {Return {Address |
| or 203| caller | dictable| of | save | address| of

| | i | called | area] | called |
i ! 1 { routinel | DMSITS | routinel
| | | 1 l | 1 i
jother |[Same as |Same as |Address |User |Return |Same as

	caller	caller	of	save	address! caller	
			caller	area	1	
					DMSITS	
1 3
Figure 6. Register Contents When Called Routine Starts

RETURNING TO THE CALLING ROUTINE

When the called

Return Location

The return
was saved at
modifying the
apon the type

the

routine finishes
DMSITS, which in turn returns control to t

indicated an error return.

and

ijs accomplished by lcading the or
time DMSITS
address field.
of SVC call,

The address
upon vhether or not

processing, control
he calling routine.

was first

iginal SVC old
entered),
field modification
the called routine

CHS Introduction

after

is returned to

PSW (which

Fossibly
depends

2-31

For SVC 202 and 203, the called routine indicates a normal return by
Flacing a zero in register 15 and an error return by rlacing a nonzero
code in register 15. 1If the called routine indicates a normal return,
then DMSITS makes a normal return to the calling routine. If the called
routine indicates an error return, DMSITS passes the error return to the
calling routine, if one was specified, and abnormally terminates if none
was specified.

For am SVC 202 not fcllowed by "DC ALY4(address)"™, a normal return is
made to the instruction following the SVC instruction, and an error
return causes an abend. For an SVC 202 followed by "rC ALY (address) ", a
normal return is made to the instruction following the DC, and an error
return is made to the address specified in the DC. In either case,
register 15 contains the return code passed back by the called routine.

For am SVYC 203 with a positive halfword code, a normal return is made
to the instruction following the halfword code, and an error return
causes an abend. For an SVC 203 with a negative halfword code, both
normal and error returns are made to the instruction following the
bhalfword code. 1In any case, register 15 contains the return code passed
Eack by the c2lled routine.

For macro simulation SvC calls, and for user—handled SvVC calls, no
error return is recognized by DMSITS. As a result, DMSITS alvays
returns to the calling routine by loading the SVC old PSW, which was
saved when DMSITS was first entered.

—_— e, el

Upon entry to DMSITS, all registers are saved as they were when the SvC
instruction was first executed. Upon exiting from DMSITS, all Tegisters
are restored from the area in which they were saved at entry.

The exception to this is register 15 in the case of SVC 202 and 203.
Upon return to the calling routine, register 15 always contains the
value that was in register 15 when the called routine returned to DMSITS
after it had completed Frocessing.

Called Routine Modifications to System Area

If the called routine has System status, so that it runs with a PsSW
storage protect key of 0, then it may store new values into the Systenm
Save Area.

If the called routine wishes to wodify the location to which control
is to be Teturned, it aust modify the following fields:

e For SYC 202 and 203, it must 8odify the NUMRET and ERRET (normal and
error return address) fields.

e For other SVCs, it must Rodify the address field of OLDPSWH.

To modify the registers that are to be returned to the calling routine,
the fields EGPR1, EGPR2, ..., EGPR15 must be modified.

If this acticn is taken by the called routine, then the SVCTRACE
facility may print misleading information, since SVCTRACE assumes that
these fields are exactly as they were when DMSITS was first entereqd.
Whenever an SVC call is made, DMSITS allocates two Save areas for that
Particular SVC call. Save areas are allocated as needed. For each SvVC
call, a system and user save area are needed.

2-32 IBM VM/370 Systenm Logic and Progranm Determination--volume 2

When the SVC-called routine returns, the save areas are not released,
but are kept for +the next SVC. At the completion of each command, all
SVC save areas allocated by that command are released.

The System Save Area is used by DMSITS to save the value of the SVC
013 PSH at the time of the SVC call, the calling routine's registers at
the time of the call, and any other necessary control information.
Since SVC calls can be nested, there can be several of these save areas
at one time. The system save area is allocated in protected free
storage.

The user save area contains 12 doublewords (24 words), allocated in
unprotected free storage. DMSITS does not use this area at all, but
simply passes a pointer to this area (via register 13.) The called
routine can use this area as a temporary work area, Or as a register
save area. There is one user save area for each system save area. The
USAVEPTR field in the system save area points to the user save area.

The exact format of the system save area can be found in the ¥YM/370
Data Areas apnd Control Block Logic. The most important fields, and

their uses, are as follows:

Field Usage

CALLER {(Fullword) The address of the SVC instruction that resulted in
this call.

CALLEE (Doubleword) Eight-byte symbolic pame of the called routine.

For O0S and user-handled SVC calls, this field contains a
character string of the form SVC nnn, where nnn is the SVC
number in decimal.

CODE (Halfword) For SVC 203, this field ccntains the halfword code
following the SVC instruction line.

OLDPSH (Doubleword) The SVC old PSW at the time that DMSITS was
entered.

NRMRET (Fullword) The address of the calling routine to which control
is to be passed in the case of a normal return from the called
routine.

EBRRET (Fullword) The address of the calling routine to which control
is to be passed in the case of an error return froa the called
routine.

EGPRS (16 Fullwords, separately labeled EGPRO, EGPR1, EGPR2, EGPR3,

«ses EGPR15) The entry registers. The contents of the
general registers at entry to DHSITS are stored in these
fields.

EFPRS (4 Doublewords, separately labeled EFPRO, EFPRZ, EFPR4, EFPR6)
The entry floating-point registers. The contents of the
floating-point registers at entry to DMSITS are stored in
these fields.

SSAVENYT (Fullword) The address of the next system save area in the
chain. This points to the system save area that is being
used, or will be used, for any SVC call nested in relatiomn to
the current one.

SSAVEPRV (Fullword) The address of the previous system save area in
the chain. This points to the system save area for the SVC
call in relation to which the current call is nested.

USAVEPTR (Fullword) Pointer to the user save area for this SVC call.

CMS Introduction 2-33

CMS Interface for Display Terminals

CMS has an interface that allows it to display large amounts of data in
a very rapid fashion. This interface for 3270 display terminals (also
3138, 3148, and 3158) is much faster and has less overhead than the
normal write tecause it displays up to 1760 characters in one operation,
instead of issuing 22 individual writes of 80 characters each (that is
one write per line on a display terminal). Data that is displayed in
the screen cutput area with this interface is nct placed in the console
spool file.

The DISPW macro allows you to use this display terminal interface.
It generates a calling sequence for the CHS display terminal interface
module, DMSGIO. DMSGIO creates a channel pProgram and issues a DIAGNOSE
instruction (Code X'58') to display the data. DHSGIC is a TEXT file
which must be loaded in order to use DISPW. The format of the CMS DISEW
macro is:

r b} r I
bufad |,LINE=n| | ,BITES=bbbb}

- 1

| | | |

{ [label] | DISPW { |

| | | | LINE=0} | . BYTES=1760} |

| | I L 3 L 1 '

| | | [ERASE=YES] [CANCEL=YES] I

1]

where:

label is an optional macro statement label.

kufad is the address of a buffer containing the data to be
written to the display terminal.

[bl

|LINE=n| is the number of the line, © to 23, on the

|LINE=0| display terminal that is to be written. Line

L J number 0 is the default.

r h)

| BYTES=Lkbbb] is the number of bytes (0 to 1760) to be written

IBYTES=1760| on the display terminal. 1760 bytes is the default.

[8 J

[ERASE=YES] specifies that the display screen is to be erased before

the current data is written. The screen is erased
regardless of the 1line or number of bytes to be
displayed. Specifying ERASE=YES causes the screen to go
into "MORE" status.

[CANCEL=YES] Causes the CANCFL operation to bLe performed: the output
area is erased.

Note: It is advisable for the user to save registers before issuing the

CISPW macro and to restore them after the macro, because neither the
macro nor its called modules save the user's registers.

2-34 IBM VM/370 System Logic and Program Determination--vVolume 2

OS Macro Simulation Under CMS

When a language Processor Or a user—written program is executing in the
CMS environment and using OS-type functions, it is not executing €S
code. Instead, CMS provides routines that simulate the O0S functions
required to support OS language processors and their generated object
code.

CMS functionally simulates the 0S macros in a wvay that presents
equivalent results to programs executing under CMS. The OS macros are
supported c¢nly to the extent stated in the ©publications for the
supported language processors, and then only to the extent necessary to
successfully satisfy the specific requirement of the supervisory
function.

The restrictions for COBOL and PL/I program execution listed in
nExecuting a Program that Uses O©S Macros" in the VM/370 Planning and
System Generation Guide exist because of the limited CMS simulation of
the 0OS macros.

Figure 7 shows the O0S macro functions that are ©partially or
conpletely simulated, as defined by SVC number.

OS Data Management Simulation

The disk format and data base organization of CMS are different from
those of 0S. A CMS file produced by an 0S program running under CHS and
written on a CMS disk, has a different format from that of an O0S data
set produced by the same OS program running under OS and written on an
0S disk. The data is exactly the same, but its format is different. (2n
0S disk is one that has been formatted by an 0S program, such as
IBCDASDI.)

HANDLING FILES THAT RESIDE ON CMS DISKS

CMS can read, write, or update any 0S data that resides on a CMS disk.
By simulating 0S macros, CMS simulates the follcwing access methods so
that 0S data organized by these access methods can reside on CHES disks:

direct jidentifying a record by a key or Ly its relative
position within the data set.

partitioned seeking a named member within the data set.

sequential accessing a record imn a sequence in relation to
rreceding or following items in the data set.

Refer to Figure 7 and the "Simulation Notes," then read M"Access
Method Support™ to see how CMS handles these access methods.

Since CMS does not simulate the indexed sequential access method

(ISAM), no 0S program that uses ISAM can execute under CMS. Therefore,
no program can write an indexed sequential data set on a CHMS disk.

CMS Introduction 2-35

HANDLING FILES THAT RESIDE ON OS OR DOS DISKS

By simulating OS macros, CMS can read, but not write or update, CS5
sequential and partitioned data sets that reside on 0S disks. Using the
same simulated 0S macros, CMS can read DOS sequential files that reside
on DOS disks. The 0S macros handle the DOS data as if it were CS data.
Thus, a DOS sequential file can be used as input to an OS prograsm
running under CHMS.

However, an OS s2quential or partitioned data set that resides on an
0S disk can ke written or updated only by an CS program running in a
real 0S machine.

CMS can execute programs that read and write VSAM files from GS
Programs written in the VS BASIC, COBOL, or PL/I programming languages.
This CMS support is based on the DOS/VS Access Method Services and
Virtual Storage Access Method (VSAM) and, therefore, the O0S user is
limited to those VSAM functions that are available under DOS/VS.

2-36 IBM VM/370 System Logic and Program Determination--Volume 2

—— — ——— — - —— — i — - oa s i S e S G tm mmn M G S n G e G — A - G o o o o A — o —— . — — — o o f— o o

Macro
Name

XDAP?

WAIT

POST
EXIT/RETURN
GETMAIN
FREEMAIN
GETPOOL
FREEPOOL
LINK

XCTL

LOAD
DELETE
GETMAIN/
FREEMAIN
TIME?
ABEND
SPIR1

RESTORE!
BLDL/FIND1

OPEN
CLOSE
STOW1?
OPENJ
TCLOSE

DEVTYPE?

TRKBAL
FEOV
WTO/WTOR1
EXTRACT!?
IDENTIFY!
ATTACH!?
CHAP1
TTIMER?
STIMER!?
DEQ1
SNAP?
ERNQ1
FREEDBUT
STAE

DETACH?
CHEKPT1
RDJFCB?1

SYNAD?
BSP1
GET/PUT
READ/WRITE
NOTE/POINT
CHECK
TGET/TPUT
TCLEARQ
STAX

93
L)
96

Function

Read or write direct access volumes

Wait for an I/0 completion

Post the I/0 completion

Return from a called phase

Conditionally acquire user storage

Release user-acquired storage

Simulate as SVC 10

Simulate as SVC 10

Link control to another phase

Delete, then link control to another
load phase

Read a phase into storage

Delete a loaded phase

Manipulate user free storage

Get the time of day

Terminate processing

Allow processing program to
handle program interrupts

Effective KNOP

Manipulate simulated partitioned
data files

Activate a data file

Deactivate a data file

Manipulate partitioned directories

Activate a data file

memporarily deactivate a data file

Obtain device-type physical
characteristics

NOP

Set forced EOV error code

Communicate with the terminal

Effective NOP

Add entry to loader table

Effective LINK

Effective NOP

Access or cancel timer

Set timer

Effective NOP

Dump specified areas of storage

Effective ROP

Release a free storage buffer

Allow processing program to
decipher abend conditions

Effective NOP

Effective NOP

Obtain information from FILEDEF
command

Handle data set error conditiorns

Back up a record on a tape or disk

Access system—blocked data

Access system-record data

Manage data set positioning

Verify READ/WRITE completion

Read or write a terminal 1line

Clear terminal input queue

Create an attention exit block

{1Simulated in the transient routine DMSSVT.

Other simulation

| routines reside in the nucleus.

b_.—.—————————_—_—.—__————.—-_-——_—-———.—.—.—_—-—-.__._-—_-_.—.__..___._._-__._..—.—-l

Figure 7.

Simulated 0S Supervisor Calls

CMS Introduction

SIMULATION NOTES

Because CMS has its own file system and is a single-user systen
operating in a virtual machine with virtual storage, there are certain
restrictions for the simulated 0S function in CMS. For example, HIARCHY
options and cptions that are used only by OS multitasking systems are
ignored by CHMS.

Due to the design of the CMS 1loader, an XCTL from the explicitly
loaded phase, followed by a LINK by succeeding phases, may cause
unpredictable results.

Listed belcw are descriptions of all the OS macro functions that are
simulated by CMS as seen by the programmer. Imrlementation and progranm
results that differ from those given in 0S Data Management Macro
Instructions and OS Supervisor Services and Macro Instructions are
stated. HIARCHY options and those used only by 0S nultitasking systens
are ignored by CMS. Validity checking is not performed within the
simulation routines. The entry point name in LINK, XCTL, and LCAD (SVC
6, 7, 8) must be a member name or alias in a TXTLIB directory unless the
COMPSWT is set to on. If the COMPSWT is on, SvC . 7. and A8 mnct
specify a module npame. This switch is turned on and off by using the
COMPSWT macrc. See the YM/370 CMS Command and Macro Reference for
descriptions c¢f all CMS user macros.

Macro-SVC No. Differences_in_Implementation

XLCAP-SVCO The TYPE opticn must be R or W; the v, I, and K
options are not supported. The BLKREF-ADDR must point
to an item number acquired by a NOTE macro. Other

options associated with V, I, cr K are not supported.

WAIT-S5VC1 A1l options of WAIT are supported. The WAIT routine
waits for the completion bit tc be set in the
specified ECBs.

POST-SVC2 All options of POST are supported. POST sets a
completion code and a completicn bit in the specified
ECB.

EXIT/RETURN Post ECB, execute end of task routines, release

-SvVC3 phase storage, unchain and free latest request block,

and restore registers depending upon whether this is
an exit or return from a linked or an attached
routine.

\
GETMAIN-SVCY All options of GETMAIN are supported except SP and
HIARCHY, which are ignored by CMS, and LC and LV,
which will result in abnormal termination if used.
GETMAIN gets blocks of free storage.

FREEMAIN-SVCS All options of FREEMAIN are supported except SP, which
is ignored by CMS, and L, which will result in
abnormal termination if used. FREEMAIN frees blocks
of storage acquired by GETMAIN.

LINK-SVCé6 The DCB and HIARCHY options are ignored by CMS. All
other options of LINK are supported. LINK 1loads the
specified program into storage (if necessary) and
Passes control to the specified entry point.

XCTL-SVC7 The DCB and HIARCHY options are ignored by CMS. 1ll
other options of XCTL are supprorted. XCTL 1loads the
specified program into storage (if necessary) and
Passes control to the specified entry point.

2-38 IBM VM/370 System Logic and Program Determination--vVolume 2

Macro-svyc No.

LOAD-SVCS8

GETPOOL/
FREEPOOL

DELETE-SVCY

GETMAIN/
FREEMAIN-
SVC10

TIME-SVC11

ABEND-SVC13

SPIE-SVC14

RESTORE-SVC17

BLDL-5VC18

FIND-SVC18

STOW-SVC21

Differences in Implementation

The DCB and HIARCHY options are ignored by CHS. All
other options of LOAD are supported. LOAD 1loads the
specified program into storage (if necessary) and
returns the address of the specified entry point in
register zero. However, if the specified entry point
is not in core when SYVC 8 1is issued, and the
subroutine contains VCONs that cannot be resolved
within that TXTLIB member, CMS will attempt to resolve
these references, and may return another entry point
address. To insure a correct address in register zero,
the user should bring such subroutines 1into core
either by the CMS LOAD/INCLUDE commands or by a VCCN
in the user program.

A11 the options of GETPOCL and FREEPOOL are supported.
GETPOOL constructs a buffer pool and stores the
address of a buffer ©pool control block im the DCB.
FREEPOOL frees a buffer pool ccnstructed by GETIPOOL.

All the options of DELETE are sufported. DELETE
decreases the use count by one and, if the result is
zero, frees the corresponding virtual storage. Code 4
is returned in register 15 if the phase is not found.

211 the options of GETMAIN and FREEMAIN are supported
except SP and HIARCHY, which are ignored by CHS.

All the opticns of TIME except MIC are supported.
TIME returns the time of day to the calling program.

The completion code parameter is supported. The DURMF
parameter is not. If a STAE request 1is outstanding,
control is givem to the proper STAE routine. If a
STAE routine is not outstanding, a message indicating
that an abend has occurred is printed on the terminal
along with the completion code.

A1l the options of SPIE are supported. The SPIE
routine specifies interruption exit routines and
progra® interruption types that will cause the exit
routine to receive control.

The RESTORE routine in CHMS is a NOP. It returms
control to the user.

BLDL is an effective NOP for LINKLIBs and JOBLIBs.
For TXTLIBs and MACLIBs, item numters are filled in
the TTR field of the BLDL list; the K, 72, and user
data fields, as described in 0S/VS Data Management
Macro Instructions, are set to zeros. The "alias" bit
of the C field is supported, and the remaining bits in
the C field are set to zero.

All the options of FIND are supported. FIND sets the
read/write pointer to the item number of the specified
menber.

All the options of STOR are supported. The "alias™"
bit is supported, but the user data field is not
stored in the MACLIB directory since CHMS MACLIBs do
not ccntain user data fields.

CMS Introduction 2-39

OPEN/OPENJ-
SVC19/22

CLOSE/TCLOSE-
SVC20/23

CEVTYPE-SVC24

FEOV-SVC31

EXTRACT-SVCU0

IDENTIFY-SVC41

ATTACH-SVC42

CHAP-SVCU44

TTIMER-SVYCU46

STIMER-SVC47

DEQ-SVC4L8

Differences in Implementation

All the options of OPEN and OPENJ are supported excerpt
for the DISP and RDBACK options, which are ignored.
OPEN creates a CMSCB (if necessary), completes the
DCB, and merges necessary fields of the DCB and CMSCE.

All the options of CLOSE and TCLOSE are supported
except for the DISP option, which is ignored. The DCB
is restored to its condition before OPEN. If the
device type is disk, the file is closed. If the
device type is tape, the REREAL option is treated as a
REWIND.

411 the options of DEVTYPE are supported except for
the RPS opticn, which is ignored. DEVTYPE amoves
device characteristic information for a specified data
set into a specified user area.

Control is returned to CMS with an error code of 4 in
register 15.

All options of WTO and WTOR are supported except those
options concerned with multiple console support. WTO
displays a message at the operator's console. HWTGCR
displays a message at the operator's console, waits
for a reply, moves the reply to the specified area,
sets a completion bit in the specified ECB, and
returns.

The EXTRACT routine in CHMS is essentially a NOP. The
user-provided ansver area is set to zeros and control
is returned to the user with a return code of 4 in
register 15.

The IDENTIFY routine in CMS adds a RPQUEST block to
the 1load request chain for the requested name and
address.

All the options of ATTACH are supported in CMS as in
0S PCP. The following options are ignored by CHS:
DCB, LPMOD, DPNOL, HIARCHY, GSPV, GSPL, SHSPV, SHSPL,
SZERO, PURGE, ASYNCH, and TASKLIB. ATTACH passes
control to the routine specified, fills in an ECB
completion bit if an ECB is specified, Passes control
to an exit routine if omne is specified, and returns
control to the instruction following the ATTACH.

Since CMS is not a multitasking system, a phase
requested by the ATTACH macro must return to CMS.

The CHAP routine in CMS is a NOP. It returns control
to the user.

All the options of TTIMER are supported.

All options of STIMER are sufported except for TASK
and WAIT. The TASK option is treated as if the REAL
option had been specified, and the WAIT option is
treated as a NOP; it returns ccntrol to the user.

The DEQ routine in CMS is a NOP. It returns control
to the user.

2-40 1IBM VM/370 System Logic and Program Determination--Volume 2

Macro-SYC Ne.
SNAP-SVC51

ENQ-SVC56

FREEDBUF-SVC57

STAE-SVC60

DETACH-SVC62

CHEKPT-SVC63

RDJFCB-SVC64

SYNADAF-SVC68

SYNADRLS-SVC68

BSP-5VC69

TGET/TPUT-
SVC93

TCLEARQ-SVCY4

STAX-SVC96

NOTE

Except for SDATA, PDATA, and DCB, all options of the
SNAP macro are processed normally. SDATA and PDATA
are ignored. Processing for the DCB option is as
follows. The DBC address specified with SNAP is used
to verify that the file associated with the DCB is
open. If it is not open, control is returned to the
caller with a return code of 4. 1If the file is open,
then storage is dumped (unless the FCB indicates a
DUMMY device type). SNAP always dumps output to the
printer. The dump contains the PSW, the registers,
and the storage specified.

The ENQ routine in CMS is a NOP. It returns control
to the user.

211 the opticns of FREEDBUF are supported. FREEDBUF
returns a buffer to the bhuffer pool assigned to the
specified DCB.

A1l the options of STAE are supported except for the
ICTL option, which is set to XCTL=YES; the PURGE
option, which is set to HALT; and the ASYNCH option,
which 1is set to NO. STAE creates, overlays, or
cancels a STAE control block as requested. STAE retry
is not supported.

The DETACH routine in CMS is a NOP. It returns
control to the user.

The CHKPT routine is a NOP. It returns control to the
user.

A1l the options of RDJFCB are supported. RDJFCB
causes a Job File Control Block (JFCB) to be read from
a CMS Control Block (CMSCB) into real storage for each
data control block specified. CMSCBs are created by
FILEDEF commands.

All the options of SYNADAF are supported. SYNADAF
analyzes an I/0 error and creates an error message in

a work buffer.

A1l the options of SYNADRLS are supported. SYNADRLS
frees the work area acquired by SYNAD and deletes the
vork area froam the save area chain.

All the options of BSP are supported. BSP decrements
the item pointer by one block.

TGET and TPUT operate as if ELIT and WAIT were coded.
TGET reads a terminal line. TPUT writes a terminal
line.

TCLEARQ in CMS clears the input terminal queue and
returns control to the user.

Updates a gqueue of CMTAXEs each of which defines an
attention exit level.

All the options of NOTE are supported. NOTE retursns
the item number of the last blcck read or written.

CMS Introduction 2-41

Bacro-SvC No. Differences in Implementation

POINT A1l the options of POINT are supported. POINT causes
the control program to start processing the next read
or write operation at the specified item number. The
TTR field in the block address is used as an item

number.

CHECK All the options of CHECK are supported. CHECK tests
the I/0 operation for errors and exceptional
conditions.

LCB The following fields of a ICB may be specified,
relative to the particular access method indicated:

operand BDAM BPAM BSAN QSAN
BFALR F,D F,D F,D F,D
BLKSIZE n(number) n n n

BUFCB a (address) a a a

BOFL n n n n

BUFNO n n n n
DDNAME s(symbol) s s s

DSORG DA PO PS PS
EODAD - a a a

EXLST a a a a
KEYLEN n - n -

LIMCT n - - -

LRECL - n n n

MACRF R,W R,W R,W, P G,pP,L,M
OPTCD A,E,F,R - - -

RECFNM F,¥v,0 F,v,0 ¥,v,B,S,A,M,T F,v,B,U0,A,M,S
SYNAD a a a a

NCP - n n -

ACCESS METHOD SUPPORT

The manipulation of data is governed by an access method. To facilitate
the execution of 0S Code under CMS, the processing pProgram must see data
as 0S would present it. For instance, when the processors expect an
access methcd to acquire input source cards sequentially, CMS invokes
specially written routines that simulate the 0S sequential access method
and pass data to the processors in the format that the 0S access methods
would have produced. Therefore, data appears in storage as if it had
been manipulated using an 0S access method. For example, block
descriptor vords (BDW), buffer pool management, and variable records are
updated in storage as if an 0S access method had processed the data.
The actual writing to and reading from the I/0 device is handled by CMS
file management. Note that the character string X'61PFFF61' is
interpreted by CHMS as an end of file indicator.

The essential work of the volume table of contents (VTOC) and the
data set control block (DSCB) is done in CMS by a master file directory
(MFD) which updates the disk contents, and a file status table (FST)
(one for each data file). All disks are formatted in physical blocks of
800 bytes.

CMS continues to update the 0S format, within its own format, on the
auxiliary device, for files whose filemode number is 4. That is, the
block and record descriptor words (BDW and RDF) are written along with
the data. If a data set consists of blocked records, the data is
written to, and read from, the I/0 device in physical blocks, rather
than 1logical records. CMS also simulates the specific methods of
manipulating data sets.

2-42 IBM VM/370 Systea Logic and Program Determination--Volume 2

To accomplish this simulaticn, CMS supports certain essential macros
for the following access methods:

¢ BDaNM (direct) -- identifying a record by a key or by its
relative position within the data set.

e BPAM (partitioned) -- seeking a named member within data set.

e BSAM/QSAM (sequential) -- accessing a record in a sequence in

relaticn to preceding or following records.

e VSAM (direct or sequential) -- accessing a record sequentially
or directly by key or address.

Note: CMS support of OS VSAM files is based om DOS/VS
Access Method Services and Virtal Storage Access Method
(VSAM). Therefore, the 0S user is restricted to those
functions available under “LO0S/VS Access Method
Services."” See the section "CMS Support for O0S and DCS
VSAM Functions" for details.

CMS alsc updates those portions of the O0S control blocks that are
needed by the 0S simulation routines +to support a program during
execution. Most of the simulated supervisory 0S control blocks are
contained in the following two CMS control blocks:

CMSCVT
sipulates the communication vector table. Location 16 contains
the address of the CVT ccntrol section.

CMSCB
is allocated from system free storage whenever a FILEDEF comsand
or an OPEN (SVC 19) is issued for a data set. The CMS Control
Block consists of a file control block (FCB) for the data file,
and partial simulation of the job file control block (JFCB),
input/output block (IOB), and data extent block (DEE).

The data control block (DCB) and the data event control block (DECE)
are used by the access method simulation routines of CHS.

Note: The results may be unpredictable if two DCBs access the same data
set at the same time.

The GET and PUT macros are not supported for use with spanned
records. READ and WRITE are supported for spanned records, provided the
filemode number is 4, and the data set is physical sequential (BSAHN)
format.

GET (QSaAM)
All the QSAM options of GET are supported. Substitute mode is
handled the same as move mode. If the DCBRECFM is FB, the filemode
number is 4, and the last block is a short block, an EOF indicator
(X'61FFFF61') must be present in the last block after the last

record.

GET (QISAM)
QISAM is nct supported in CHMS.

PUT (QSAHN)
A11 the QSAM options of PUT are supported. Substitute mode is
handled the same as move mode. If the DCBRECFM is FB, the filemode
number is 4, and the last block is a short blcck, an EOF indicator is
written in the last block after the last record.

CMS Introduction 2-43

PUT (QISAHN)
QISAM is not supported in CMS.

PUTX
PUTX support is provided only for data sets opened for QSAM-UPDATE
with simple buffering.

READ/WRITE (BISAM)
BISAM is nct supported in CMS.

READ/WRITE (BSAM and BPAM)
A1l the BSAM and BPAM options of READ and WRITE are supported except
for the SE option (read backwards).

READ (0Offset Read of Keyed BDAM dataset)
This type of READ is not supported because it is used only for
spanned records.

READ/WRITE (BDAM)
All +the BDAM and BSAM (create) options of READ and WRITE are
supported except for the R and RU options.

When an input or output error occurs, do not depend on 0S sense
bytes. An error code is supplied by CMS in the ECB in place of the
sense bytes. These error codes differ for various types of devices and
their meaning can be found in the IBM VM/370: System Messages, under
DMS nmessage 120S.

BDAM Restrictions

The four methods of accessing BDAM records are:

1. Relative Block RRR

2. Relative Track TTR

3. Relative Track and Key TTKey
4. Actual Address MBBCCHHR

The restrictions on these access methods are as follows:

e Only the BDAM identifiers underlined above can be used to refer to
records, since CMS files have a two-byte record identifier.

e CMS BDAM files are always created with 255 records on the first
logical track, and 256 records on all other 1logical tracks,
regardless of the block size. If BDAM methcds 2, 3, or 4 are used
and the RECFM is U or V, the BDAM user must either write 255 records
on the first track and 256 records on every track thereafter, or he
must not update the track indicator until a NO SPACE FOUND Ressage is
returned on a write. For method 3 (WRITE ADD), this message occurs
when no more dummy records can be found on a WRITE request. For
methods 2 and 4, this will not occur, and the track indicator will be
updated only when the record indicator reaches 256 and overflow¥s into
the track indicator.

® Two files of the same filetype, both of which use keys, cannot be
open at the same time. If a program that is updating keys does not
close the file it is updating for some Treason, such as a systenm
failure or another IPL operation, the original keys for files that
are not fixed format are saved in a temporary file with the same
filetype and a filename of $KEYSAVE. To finish the update, run the
program again.

2-44 IBM VM/370 System Logic and Program Determination--Volume 2

e Once a file is created using keys, additicns to the file must not be
made without using keys and specifying the original length.

e The number of records in the data set extent must be specified using
the FILEDEF command. The default size is 50 records.

o The minimuam LRECL for a CMS BDAM file with keys is eight bytes.

READING OS DATA SETS AND DOS FILES USING OS MACROS

CBS users can read 0S sequential and partitioned data sets that reside
on 0S disks. The CMS MOVEFILE command can be used to manipulate those
data sets, and the OS QSAM, BPAM, and BSAM macros can ke executed under
CMS to read then.

The CMS MOVEFILE command and the same 0S macros can also be used to
manipulate and read DOS sequential files that reside on DOS disks. The
0S macros handle the DOS data as if it were 0S data.

The following 0S Release 20.0 BSAM, BPAM, and QSAM macros can be used
with CMS tc read 0S data sets and DOS files:

BLDL ENQ RDJFCB
BSP FIND READ
CHECK GET SYNADAF
CLOSE NOTE SYNADRLS
DEQ POINT WAIT

DEVTYPE POST

CMS supports the following disk formats for the 0S and 0S/VS
sequential and partitioned access methods:

Split cylinders
User labels
Track overflow
Alternate tracks

As in 0S, the CMS sugport of the BSP macro produces a return code of
4 when attempting to backspace over a tape mark or vwhen a beginning of
an extent is found on an 0S data set or a DOS file. If the data set or
file contains split cylinders, an attempt to backspace within an extent,
resulting in a cylinder switch, also produces a return code of 4.

The ACCESS Command

Before CMS can read an 0S data set or DOS file that resides on a non-CMS
disk, you must issue the CMS ACCESS command to make the disk on which it
resides available to CHMS.
The format of the ACCESS command is:
ACCESS cuu mode[/ext]

You must not specify options or file identification when accessing an OS
or DOS disk.

CMS Introduction 2-45

13

be FILEDEF Cc

You then issue the FILEDEF command to assign a CMS file identification
to the 05 data set or DOS file so that CMS can read it. The format of
the FILEDEF command used for this purpose is:

| 1
| | r r oI or 1 |
] PIledef | (ddname {IDISK fn £t (fm|{ |DSN ? | |
| | nn | IA11l IDSN g1 [gq2...]I i
| | * L Lt 43 L 4 |
i | r r a1 |
| | DISK (fn ft fmi| |
| I IEILE ddpame [A11| I
{ | L L 42 |
| | |
| I DUMMY i
| { r 1 |
{ | Related Option: |IMEMBER membername| |
| | I CONCAT ! 5
| { L 4 |
L]

If you are issuing a FILEDEF for a DOS file, note that the 0S program
that will use the DOS file amust have a DCB for it. For "ddname™ in the
FILEDEF command line, use the ddname in that DCB. With the DSN operand,
enter the file-id of the DOS file.

Sometimes, CMS issues the FILEDEF command for you. Although the CHMS
MOVEFILE command, the supported CMS program product interfaces, and the
CHMS OPEN routine each issue a default FILEDEF, you should issue the
FILEDEF command yourself to ensure the appropriate file is defined.

After you have issued the ACCESS and FILEDEF commands for an CS
sequential or partitioned data set or DOS sequential file, CMS commands
(such as ASSEMBLE and STATE) can refer to the 0S data set or DOS file
just as if it were a CMS file.

Several other CMS commands can be used with 0S data sets and DCS
files that do not reside on CMS disks. See the YM/370 CMS Command and
Bacro Reference for a complete description of the CMS ACCESS, FILEDEF,
LISTLS, MOVEFILE, QUERY, RELEASE, and STATE commands.

For restrictions on reading 0S data sets and DOS files under CMS, see
the ¥8/370 Plapning and System Geperation Guide.

The CMS FILEDEF command allows you to specify the I/0 device and the
file characteristics to be used by a program at execution time. 1In
conjunction with the O0S simulation scheme, FILEDEF simulates the
functions of the data definition JCL statement.

FILEDEF may be used only with programs using OS macros and functionms.
For example:

filedef filel disk proga data af

After issuing this command, your program referring to FILE1 would access
PROGA DATA cn your A-disk.

2-46 IBM VM/370 System Logic and Program Determination--Volume 2

If you wished to supply data from jyour terminal for FILE1, you could
issue the command:

filedef file1 terminal
and enter the data for your program without recompiling.

fi tapein tap2 (recfm fb lrecl 50 block 100 gtrack den 800)
After issuing this command, programs referring to TAPEIN will access a
tape at virtual address 182. (Each tape anit in the CMS environment has

a symbolic name associated with it.) The tape must have been previously
attached to the virtual machine by the VM/370 operator.

The AUXPROC Option of the FILEDEF Command

The AUXPROC option can only be used by a program call to FILEDEF and not
from the terminal. The CMS language interface programs use this feature
for special I/0 handling of certain (utility) data sets.

The AUXPROC option, followed by a fullword address of an auxiliary
processing routine, allows that routine to receive control from DMSSEB
before any device I/0 is performed. At the completion of its processing,
the auxiliary rountine returns control to DMSSEB signaling whether or not
I/0 has been performed. If it has not been done, DMSSEB performs the
appropriate device I/0.

Rhen contrcl is received from DMSSEB, the general-purpose registers
contain the following information:

GPR2 = Data Control Block (DCB) address
GPR3 = Base register for DMSSEB

GPR8 = CMS OPSECT address

GPR11 = File Control Block (FCB) address
GPR14 = Return address in DHSSEB

GPR15 = Auxiliary processing routine address

all other registers = Work registers

The auxiliary processing routine must provide a save area in which to
save the general registers; this routine must also perfora the save
cperation. DMSSEB does not provide the address of a save area in
general register 13, as is usually the case. When control returns to
DMSSEB, the general registers must be restored to their original values.
Control is returned to DMSSEB by branching to the address contained in
general register 14.

GPR15 is used by the auxiliary processing routine to inform to DMSSEB
of the action that has been or should be taken with the data block as
follows:

Register Content Action
GPR15=0 No 1,/0 performed by AUXPROC routine; DMSSEB will perform I/C.

GPR15<0 I/0 performed by AUXPROC routine and error was encountered.
DMSSEB will take error action.

GPR15>0 1/0 performed by AUXPROC routine with residual count in GPR15;
DMSSEB returns normally.

GPR15=64K I/0 performed by AUXPROC routine with zero residual count.

CMS Introduction 2-47

DOS/VS Support Under CMS

CHS supports interactive program development for DOS/VS Release 31, 32,
33 and 34. This includes creating, compiling, testing, debugging, and
executing commercial aprlication programs. The DOS/VS programs can be
executed in a CMS virtual machine or in a CMS Batch Facility virtual
machine.

DOS/Vs files and libraries can be read under CMS. VSAM data sets can
be read and written under CMS.

The CMS DOS environment (called CMS/DOS) provides many of the sanme
facilities that are available in DOS/VS. However, CMS/DOS supports only
those facilities that are supported by a single (background) partition.
The DOS/VS facilities supported by CMS/DOS are:

DOS/VS linkage editor

Fetcn support

DOS/VS Supervisor and I/0 macros

DOS/VS Supervisor control block support
Transient area support

DOS/VS VSAM macros

This environment is entered each time the CMS SET DOS ON command is
issued; VSAM functions are available in CMS/DOS only if the SET DOS CN
(VSAM) command is issued. In the CMS/DOS environment, CMS supports many
LOS/VS facilities, but does ot support OS simulation. When you no
longer need DOS/VS support under CMS, you issue the SET DOS OFF command
and DOS/VS facilities are no longer available. :

CHS/DOS can execute programs that use the sequential access method
(SAM) and virtual storage access method (VvsaM), and can access DOS/VS
libraries.

CMs/Dos cannot execute Erograms that have execution-time
restrictions, such as programs that use sort exits, teleprocessing
access methods, or multitasking. DOS/VS COBOL, DOS PL/I, and Assembler
language programs are executable under CMS/DOS.

All of the CP and CMS online debugging and testing facilities (such
as the CP ADSTOP and STORE commands and the CMS DEBUG environment) are
supported in the CMS/DOS environment. Also, CP disk error recording and
recovery is supported in CMS/DOS.

With its support of a CMS/DOS environment, CMS becomes an important
tool for DOS/VS application program development. Because CMS/DOS was
designed as a DOS/VS program development tool, it assumes that a DOS/Vs
system exists, and uses it. The following sections describe what is
supported, and what is not.

CHMS SUPPORT FOR OS AND DOS VSAM FUNCTIONS

CHS supports interactive program development fer O0S and DOS Prograas
using VSAM. CHS supports VSAM for O0S programs written in VS BASIC,
0S/V¥sS COBOL, or O0S PL/I programming languages; or DOS programs written
in DOS/VS COBOL or DOS PL/I programming languages. CHMS does not support
VSAM for 0S or DOS assembler language pPrograms.

2-48 IBM V4/370 System Logic and Program Determination--Volume 2

CMS also supports Access Method Services to manipulate 0S and DOS
VSAM and SAM data sets.

Under CMS, VSAM data sets can span up to nine DASD volumes. CHMS does
not support VSAM data set sharing; however, CMS already supports the
sharing of minidisks or full pack minidisks.

VSAM data sets created in CMS are not in the CMS file format.
Therefore, CMS coammands currently used to manipulate CMS files cannot be
used for VSAM data sets which are read or written in CHMS. A VSAM data
set created in CMS has a file format that is compatible with 0S and DQS
VSAM data sets. Thus a VSAM data set created in CMS <can later be read
or updated by 0S or DOS.

Because VSAM data sets in CMS are not a part of the CMS file systen,
CMS file size, record 1length, and minidisk size restrictions do not
apply. The VSAM Jdata sets are manipulated with Access Method Services
programs executed under CMS, instead of with the CMS file systenm
commands. Also, all ¥SAM minidisks and full packs used in CMS must be
initialized with the IBCDASDI program; the CMS FORMAT command must not
be used.

CMS supports VSAM control blocks with the GENCB, M¥CDCB, TESTCB, and
SHOWCB macros.

In its support of VSAM data sets, CMS uses RPS (rotational position

sensing) wherever possible. CHS does not use RPS for 2314/2319 devices,
or for 3340 devices that do not have the feature.

Hardware Devices Supported

’

Because CMS support of VSAM data sets is based on DOS/VS VSAM and DOS/VS
Access Method Services, only disks supported by DOS/VS can be used for
VSAM data sets in CMS. These disks are:

e 1IBM 2314 Direct Access Storage Facility

e IBM 2319 Disk Storage

e IBM 3330 Disk Storage, Models 1 and 2

e IBM 3330 Disk Storage, Hodel 11

e IBM 3340 Direct Access Storage Facility

e IBM 3344 Direct Access Storage

e IBM 3350 Direct Access Storage

CMS Introduction 2-49

2-50 IBM VM/370 System Logic and Program Determination--Volume 2

CMS Method of Operation and Program
Organization

This section contains the following information:
e Initialization of the CMS Virtual Machine Environment

e Processing and Executing CMS Files

Handling I/0 Operationms

Simulating Non-CHS Operating Environments
e Performing Miscellanecus CMS Functions

The CMS Jdescription is in two parts. The first part contains figures
showing the functional organization of CMS. The second part contains
general information about the internal structure of CMS prograss and
their interaction with one another.

CMS program organization is in two figures. Figure 8 is an overview

of the functional areas of CHS. Each block is numbered and corresponds
to a more detailed outline of the function found in Figure 9.

CMS Method of Operation and Program Organization 2-51

Process
Commands

that Manipulate

Manage
the CMS
File
System

the File System

®

Process
And
Execute
CMS Files

Initialize the
CMS Virtual
Machine

Environment

cms

Handle
1/0
Operations

Handle

WGie

Interruptions

®

©®

Perform
Miscellaneous
CMS Functions

Simulate
Non-CMS
Operating
Environments

Manage
CMS
Storage

Figure 8.

An Overview of the Functional Areas

of CHMsS

)

2-52 IBM VM/370 System Logic and Program Determination--vVolume 2

-

1

Figure 9.

Details of
Perform Them (Part 1 of 4)

CMsS

Initialize the Process
CMS Virtual and
Machine Execute
Environment CMS Files
?ﬁai"ta”_‘ an Process Load and Process Perform
’\nteraftwe and Execute Execute MODULE Library
Lonsole EXEC Files TEXT Files Files Support
Environment Functions
DMSINL DMSINT DMSEXC DMSLOA DMSMOD DMSLBM
L
Interpret Load a disk Process the G
iy commands verson of LOAD and aMOBULE e MACLIS
nucleus entered at the EXEC INCLUDE file files
the console processor commands
! | ‘
i
DMSINS DMSINA DMSEXT DMSLDR DMSMOD DMSLBT
Initialize . . Generate
storage constants Handle Perform Begin execution Load a and u;date
and virtuat disks synonyms and EXEC of programs MODULE 2 TXTLIB
for a virtual abbreviations processing in storage file Jibrary
machine
DMSINT DMSSCN DMSLSB
Handle first Processa Process
commands command line loader
entered at and create options
the consoie aPLIST
DMSSET DMSLIO
Set virtual Create a
machine load map
environment and perform
options for execution foader 1/0
DMSQRY DMSITS DMSMDP
Query the Process T d
virtual machine command vpe a loa
environment functions map at a
option settings via SVC caiis console
DMSGLB
Define libraries
to be searched
during execution
and assembly
T
]
DMSLGT
Create a chain
of TXTLIB
blocks for use
during execution;
refease the chain
DMSLIB
Search TXTLIB
tibraries for
undefined symbols;
close TXTLIB
libraries
. =
System Functions and the Routines

CMS Method of Operation and Prograa Organization

that

2-53

O—
Process Manage
Commands the CMS
that Manipulate File
the File System System
Perform Perform Manage {L)Z::‘; FF’?'veform
i D
g:;;;ar’t Fie Maa‘naipulaticn \E/);;'ku?)’ata ::hle CSMS Upda(_e
Functions Functions tle System Functions
I i i I
DMSSTT DMSEDC, DMSE DF| DMSPRT DMSACC DMSLAD DMSARE
DMSEDI, DMSEDX
Verity the Access data Find an Clear an
existence of Create and Print a on a virtual active disk active
a file and update files record disk table disk table
return its address
DMSLST DMSUPD DMSPUN DMSACM DMSLAF DMSFNS
List the Update Build an Find an Close any
names of source Punch active disk active file open files
files on a files arecord table table on disk
CMS disk
DMSSYN DMSCPY DMSTYP DMSACF DMSLFS DMSALU
i Clear tables
Create synonyms Manipulate T Build file Find a file
and abbreviations disk file o status table status :::) c’ir:fe:‘tmaee
fi records blocks for a table .
for a file name wirtual disk With 3 disk
DMSRNM OMSCMP DMSASM |_OMSLAE ___J
_—
Interface Create or
Rename Compare with the delete active
N records in
a file wo files assembler to file table
assemble files entries
DMSERS DMSSRT DMSDSK
Sort/arrange Load card to-
E'?fe records in disk, dump
a file a file disk-to-card
DMSRDC DMSTPE
Process
Ze:::: TAPE command
< functions
DMSMVE
Move data
from one
device to
another
3 :] .
Figure 9. Details of CMS System Functions and the Routines

Perform Them (Part 2 of 4)

2-54 IBM VM/370 Systenm Logic and Program Determination--Volume 2

that

Handle Handle s
Operations Interrupts Storage
Perform Perform Perform Perform Write to Wait for
Console Disk Unit Tape a Display 1/0 to0
10 170 Record 10 Terminal Complete
/o
DMSCIT DMSDIO DMSPIO DMSTPD DMSSCR DMSIOW DMSCIT DMSFRE
Read or Load display 5 Allocate and
Start an write one or Perform print Read a buffers to be :‘:‘a;t/éo;em :::sc:,lle release free
1/0 operation more blocks 1/0 functions PDS tape displayed on to take place ime,me " system and
of disk data ascreen pts user storage
DMSCWT DMSTQQ, DM: DMSCIO DMSTIO DMSGIO DMSITS DMSHDS DMSSMN
] . : nd
Wait for a Manipulate Perform read Read o1 Issue a Set up and Aliocate a
console event storage card and punch write a'tap:— display to Handle SVC handle user- :Ie:s?'eu;::ssttgrm
to complete management card 1/0 record screen interrupts defined SVC 05 GETMAINS
chains DIAGNOSE interrupts FREEMAN macros
DMSCAT DMSBRD. DMSBWR] DMSCWR DMSTMA DMSITI DMSHDI
Stack a line Read or write Write a Read an unioaded Set nd
of console one or more line to the PDS from tape Handle /0 h:n:lz iuser-
input for itemson a console and place it in interrupts defined 1/0
DMSCRD disk file aMACLIB interrupts
DMSCRD DMSPNT DMSITE
Set the read
:::%: or write Handle
console pointer for a external
input file to a given interrupts
file item
DMSCWR DMSITP
Write a line Handie
to the console program check
interrupts
: s . s
Figure 9. Details of CMS System Functions and the Routines that

Perform Them (Part 3 of 4)

CHS Method of Operation and Program Organization

2-55

Simulate
Non-CMS
Operating
Environments

[

-

Perform
Miscellaneous
CMS Functions

[

|

DMSIFC DMSBTB DMSDBG DMSGND DMSABN
Provide X .
Access Simulate g'(f)“s‘"ate Checks and passes Load the CMS Perform Generate Handle
Method 0s) CPEREP operands Batch Virtual DEBUG an auxiliary abnormal
Support Functions Functions to EREP Machine functions directory termination
(IFCEREP1)
I DMSREA DMSBTP DMSOVR DMSASD DMSERR
DMSSQS DMSFLD
Provides records to Perform batch Load the Provide an Generate
inter EREP from the processing SVCTRACE auxiliary error
pret OS
Support JCL parameters VM/370 error functions module, directory messages
QasAm for use by CMS recording cylinders DMSOvVs
[J DMSOVS DMSLAD
DMSSBS DMSSVT, DMSSOP,
DMSSCT, DMSSMN, Perform nciude an
Support DMSSVN, DMSSLN, SVCTRACE prisised
SLAM one functions the FST chain
BPAM Simulate OS
macros
DMSSBD DMSSEB
Support Perform
BDAM 1/0 functions
for
Initializ Process .
DMSVI8 DMSROS o(ljé ar": Process ';vggeés) Provide DOS Terminate
Load the Allow CMS to Progess DOS DOS 1/0 Retat ;ecutmn DOS SVC Service the DOS
CMS/VSAM ACCESS,STATE, System Control Functions Foron Simulation Commands Environment
shared system READ, NOTE, Commands unctions
for OS VSAM and BACKSPAC
programs on OS disks
DMSVIP DMSLDS DMSSET DMSBOP DMSDLK DMSDOS DMSSRV DMSBAB
Interface with f .edi Pass control to
List . . Link-edit Handle all Copy books from
VSAM programs information Initialize Simulate DOS/VS CMS/I; 3 5 a source statement an abnormal
to perform VSAM the CMS/DOS the DOS/VS f 0S SVC terminati
y about OS . phases in library to an vination
functions for environment OPEN function requests . routine
data sets storage output device via
0S VSAM programs - STXIT AB macro
DMSVSR DOMSOPT DMSOR 1, DMSOR2 DMSFET, DMSFCH DMSRRV DMSITP
Reset fields OMSOR3 Copy modutes Process program
set during VSAM Set compiler Locate a t:a'?‘ a :)ha{se, froma interrupts
processing and options specified gin program relocatable and SPIE
purge the CMS/ file execution library to an exits
VSAM DCSS output device
DMSAMS DMSASN DMSOPL DMSPRY DMSDMP
L — L
Support Associate system Access a source Copy procedures Simulate
VSAM or programmer statement from a procedure $SDUMP and
Access Method logical units fibrary for a library to an SSPDUMP; issue
Services with physical units DOS/VS compiler output device gTADGUI\YgsE
DMSLLY DMSCLS DMSDSV
. . Simulate the List the
L;s‘t agslq'nr:e;‘ms DOS/VS CLOSE directories
of logical units function of libraries
OMSDLB DMSDSL
Associate a Pe"eﬁ' °°’""" ess,
DTF table ist phases of
filename with aDOSLIB
a logical unit library
. . . :
Figure 9. Details of CMS Systea Functions and the Routines that

2-56

Perform Them (Part 4 of 4)

IBM VM/370 System Logic and Program Determination--Volume 2

Initialization of the CMS Virtual Machine
Environment

There are four steps involved in initializing a CHS virtual machine:

e Processing the IPL command for a virtual card reader.

e Processing the IPL command for a disk device or a named or saved
system.

e Processing the first command line entered at the CHS virtual console.

e Setting up the options for the virtual machine operating environment.

DMSINI and DMSINS are the two routines that are mainly responsible
for the one-time initialization process in which the virtual card reader
is initial program loaded. DMSINI also handles the IPL process when a
named or saved system is loaded. The CHS command interpreter, DMSINT,
processes the first line entered from the console as a special case; the
processing performed by this code is a part of the initialization
process. DMSSET sets up the user-specified virtual machine environment
features; DMSQRY allows the user to query the status of these settings.

Initialization: Loading a CMS Virtual Machine from
Card Reader

When a virtual card reader is specified by the IPL coamand, for example
00C, initialization processing begins. Initialization refers to the
process of loading from a card reader as opposed to reading a nucleus
from a cylinder of a CMS minidisk or reading a named or shared systenm
(description follows).

IPL 00C invokes the CMS module DMSINI, which requests that the
operator enter information such as the address of the DASD where the
nucleus is to be written, the cylinder address where the write operation
is to begin, and vwhich version of CMS is to be written (if there is more
than one to choose fromj.

¥hen all questions are answered, the requested nucleus is written to
the DASD.

Once written on the DASD, a copy of the nucleus is read into virtual
machine storage. One track at a time is read from the disk-resident
nucleus into virtual storage. DMSINS is then invoked to initialize
storage constants and to set up the disks and storage space required by
this virtual machine.

DMSINS performs three general functions:

e Initializes storage constants and system tables.
e pProcesses IPL command line parameters (SEG= and BATCH).

e Initializes for 0S SVC processing, in the case where a saved segment
is not available for use in processing OS simulation regquests.

CMS Method of Operation and Prograam Organization 2-57

INITIALIZES STORAGE CONTENTS AND SYSTEM TABLES

DMSIES
Saves the address of this virtual machine in NUCON.

DHSLAD
Locates and returns the address of the ADT for this virtual machine.

DNSFRE
Allocates free storage to be used during initialization.

DMSFRE
Allocates all low free storage so that the system status table
(SSTAT) will be built in high free storage.

DMSACH
Reads the S-disk ADT entry and builds the SSTAT.

DMSFRE

Releases the 1low free storage allocated above (to force SSTAT into
high storage) so that it can be used again.

DHSINS
Stores the addiess of SSTAT into ASSTAT and ADTFDA in NUCON.

DMSALD
Sorts the entries in the SSTAT.

PROCESSES IPL COMMAND LINE PARAMETERS

DMSINS
Checks for parameters BATCH, and SEG=, or AUTOCR. If BATCH is
specified, DMSINS sets the flag BATFLAGS. If SEG= is specified,
DMSINS loops through again to read the segment name. At this point,
all the parameters on the command line have been scanned.

If SEG= is specifiad, the DIAGNOSE 64 FINLSYS function is issued
to determine whether the segment specified on the command line
exists. If it does, the DCSSAVAL flag is temporarily set.

If AUTOCR is specified, a local flag is set so that the subsequent
console read may be bypassed and the null line input simulated. This
action causes a PROFILE EXEC to be executed.

DMSIKS
Issues DIAGNOSE 24 toc obtain the device type of the console.

DMSCHR

——— e

Writes the system id message to the console.

DHMSCRD
Reads the IPL command line from the console.

DMSSCN

Puts the IPL command line in PLIST format.

DMSINS
If the FINDSYS DIAGNOSE validated the segment name specified on the
IPL command line, DMSINS issues a DIAGNOSE €4 SAVESYS function for
that segment.

2-58 1IBM VM/370 System Logic and Program Determination--Volume 2

Clears DCSSAVAL and ensures that all the parameters on the command
line are valid; branches back to label INITLOOP to reprocess for the
segment just saved.

DMSINS
If BATCH is specified, sets BATFLAGS and BATFLAG2 in NUCON. Saves
the name of the BATCH saved system in SYSNAME in NUCON.
DHMSACC
Issues ACCESS 195 A to access the batch virtual machine A-disk.
DMSINS
Issues DIAGNOSE 60 to get the size of the virtual machine; sets up
enough storage for this virtual machine.
DMSINS

If the DCSSAVAL flag is set, sees if the size of the CMSSEG segment
overlaps the size of the virtual machine. If this is the case,
DMSINS sets the flag DCSSOVLP and continues the initialization
procedure for a CMS virtual machine runping without the use of the
CMSSEG segment, that is, performs time-of-day processing and OS
initialization.

If the CMSSEG segment can be used, DMSINS issues the DIAGNOSE 64
LOADSYS function as the final check to see if the segment is usable.
If the segment is loaded successfully, it can be used vwhenever one of
the functions contained in it is requested. Because it is not
required immediately, DMSINS issues the DIAGNCSE 64 PURGESYS functicn
to purge the segment.

If the segment cannot be successfully loaded, DMSINS turns off the
DCSSAVAL flag.

INITIALIZE OS SVC-HANDLING WITHOUT THE USE OF THE CMSSEG SEGMENT

DMSINS

Checks for the availability of CMSSEG.

DMSSTT
Finds and retuins the address of DMSSVT, the CMS 0S SvC-handler.

DMSFRE

Acquires enocugh free storage to contain DMSSVT.

DMSLOA
Loads DMSSYT.

DMSINS

Sets the flag DCSSVTLD.

DMSINS
If the BATCH virtual machine is not being loaded, determines whether
there is a PROFILE EXEC or a first command line to be handled. 1If
so, issues SVC 202's to process these commands and passes control to

DMSINT, the CMS console manager.

DMSACC
If the BATCH virtual machine is being initial program loaded,
accesses the D-disk and passes control tc DMSIKT, the console

manager.

CMS Method of Operation and Program Organization 2-59

Initializing a Named or Saved Systems

A named system is a copy of the nucleus that has been saved and named
with the CP SAVESYS command. It is faster to IPL a named system than to
IPL by disk address because CP maintains the named system in page format
instead of CMS disk format. That is, the saved system is on disk in
4096-byte blocks instead of 800-byte blocks. The initialization of a
saved syster is also faster because the SSTAT is already built.

The shared system is a variant of the saved system. In the shared
system, reentrant portions of the nucleus are Placed in storage pages
that are available to all users of the shared system. FEach user has his
own copy of nonreentrant portions of the nucleus. The shared Pages are
protected by CP, and may not be altered by any virtual machine.

During DMSINI processing, the virtual machine operator is asked if
the nucleus must be written (via message DMSINIEO7R). If the operator
ansvers no, contrecl passes directly to DMSINS to initialize the named or
saved system specified by the operator in his answer to message
DMSINI606R.

Handling the First Command Line Passed to CMS

DMSINT, the CMS console manager, contains the code to handle commands
stacked by module DMSINS during initialization processing. DMSINT
checks for the presence of a stacked command line, and if there is one
to process, processes it just as it would a ccmmand entered during a
terminal session. That is, DMSINT calls the WAITREAD subroutine and
issues an SVC 202 to execute the command. When first command processing
completes, DMSINT receives control to handle commands entered at the
console for the duration of the session.

Setting and Querying Virtual Machine Environment
Options

DMSSET sets up the virtual machine environment options, as outlined in
the publication ¥M/370 CMS Command and Macro Reference. DMSQRY displays
these settings at the user console. Both of these modules are
structured and relatively easy to follow, except for some sections of
DMSSET.

DMSSET: SET DOS ON (VSAM) PROCESSING

DESSET
(label DOS) If a disk mode is specified on the command line, ensure
that it is valid.

DMSLAD

If the disk mode specified is valid, locates and returns the address
of the disk.

DNSSET

Issues DIAGNOSE 64 FINDSYS to locate the CMSDOS segment. If the
segment is not already loaded, issues DIAGNOSE 64 LOADSYS to load it.

2-60 1BM VM/370 System Logic and Program Determination--Volume 2

DMSSET
Sets up the $$B-transient area for use by DOS routines.

DMSSET
If SET DOS OFF has been specified, issues the DIAGNOSE 64 PURGESYS
function for the CMSDOS segment and, if VSAM has been locaded, for the
CMSVSAM segment.

DMSSET: SET SYSNAME PROCESSING

DMSSET
Determines whether the name of the CHMSSEG segment is being changed.

DMSSET
Determines whether NONKSHARE is specified. If so, the segment may be
loaded and kept. If NONSHARE is not specified, the segment is purged,
because it is needed only on demand.

DMSSET
Once a new name is placed in the SYSNAMES table replacing CMSSEG, the
DIAGNOSE 64 FINDSYS function is issued to determine whether the new
name has been entered correctly. If the FINDSYS is successful, the
size of the wvirtual machine is compared to beginning address of the
segment to determine whether the segment overlays virtual machine

storage.

If the segment can be used (i.e. does not overlay the virtual machine
storage) the DIAGNOSE 64 LOADSYS function is performed. If the
LOADSYS executes successfully, control passes to DMSINT, where the
segment is purged (because it is only needed cn demand).

CMS Method of Operation and Program Organization 2-61

Processing and Executing CMS Files

As shown in Part 1 of Figure 9, the five general topics form the
category "Process and Execute CMS Files." Iwo of these topics are
discussed in this section: "Maintaining an Interactive Console
Environment" and "Loading and Executing TEXT files."

Maintaining an Interactive Console Environment

Two levels of information are discussed in the following section. The
first level is a general discussion of how CMS maintains an interactive
conscle environment. The second level is a more detailed discussion cf
the methods of operation mainly responsible for this function.

Console Management and Command Handling in CMS

There are two major functions concerned with maintaining an interactive
terminal environment for CMS: console management and command processing.
The CMS module that manages the virtual machine console is DMSINT. The
module responsible for command Frocessing is DMSITS. Many CMS modules
are called in support of these two functions but the modules in the
following list are primarily responsible for suprorting the functions:

DMSCRD

Reads a line from the console.

DMSCHR

Writes a line to the console.

DMSSCN

Passes a command line to CP for execution.

Maintaining an Interactive Command/Response
Session

Three main lines of control maintain the continuity for an interactive
CHMS session: (1) handling of commands passed to DMSINT by the
initialization module, DMSINS (2) handling of commands entered at the
console during a session, and (3) handling of commands entered as subset
commands. The following 1lists show the main logic paths for first two
functions.

2-62 IBM VM/370 System Logic and Program Determination--Volume 2

EXECUTE COMMANDS PASSED VIA DMSINS

DMSIRT
On entry from DMSINA, processes any commands passed via the comnsole
read put on the user's consocle by that routine; that is processes
any commands the user stacks on the line as the first read that
DMSINT processes. In handling the first read, if that read is null,
control passes to the main lcop of the program, which 1is described
in the fcllowing section.

DHSIRY
Get the current time.

DMSCRD

Branch to the waitread subroutine to read a command 1line at the
console.

DHSSCHN
Waitread then calls DMSSCN tc convert the line just read into plist
format. Once converted to plist format, an SVC 202 is issued (at
label INIT1A) to execute the function. This cycle is repeated until

all stacked commands are executed.

DHSENS
When command execution completes, calls DMSFNS (at label UPDAT) to
close any files that may have remained ofen during the command

processing.

DMSYSR
Ensures that any fields set by VSAM processing are reset for CHMS.
Also ensures that the VSAM discontiguous shared segment is purged.

Sets up an appropriate status message (CMS, CHMS SUBSET, CMS/DOS,

HANDLE COMMANDS ENTERED DURING A CMS TERMINAL SESSION

DMSINT
Branches (from label INLOOP2) to the waitread subroutine to read a
line entered at the console.

DMSCRD

Reads a line entered at the console (subroutine waitread).

DMSSCN

Converts the command line to PLIST format (subroutine waitread).

DMSINT

If the command line is neither a command 1line nor a comment,
determines whether the command is an EXEC file.

DMSINA (ABBREYV)
Determines whether the command is an abbreviation and, if it is,
returns its full name.

CMS Method of Operation and Program Organization 2-63

DMSITS
Passes the command line to DMSITS via an SVC 202. DMSITS is the CMS
SVC handler. For a detailed description of the SVC handler, see
"Method cof Operation for DMSITS."™

DMSCPF
If the command could not be executed by the SVC handler, passes the
command to CP to see if CP can execute it.

DHSFNS

On return from processing the command 1line (label UPDAT), closes any
files that may have been opened during processing.

DHSSHN
Resets any flags or fields that may have been set during OS
processing.

DMSVSR
Ensures that any fields set for VSAM processing are reset for CHMS.
Also ensures that the VSAM discontiguous shared segment is purged.

DMSINT

When the command line has been successfully executed, builds a CHMS
ready message for the user (label PRNREADY).

DMSCHR
Writes the ready message to the console.

DMSINT

Returns control to DMSINT at label INLOOP2 to continue monitoring the
CHMS terminal session.

Method of Operation for DMSINT

DMSINT, the console manager, maintains the continuity of operation of
the CMS command environment. The main control 1loop of DMSIKT is
initiated by a call to DMSCRD to get the next command. When the command
is entered, DMSINT calls DMSINM to initialize the CPU time for the new
command and then puts it in standard parameter list form by calling the
scan function program DMSSCN. After calling DMSSCN, DMSINT checks to
see if an EXEC filetype exists with a filename of the typed-in command.
(For example, if ABC was typed in, it checks to see if ABC EXEC exists.)
If the EXEC file does exist, DMSINT adjusts register 1 to point to the
same command as set up by DMSSCN, but preceded by CL8'EXEC', and then
issues an SVC 202 to call the corresponding EXEC procedure ('ABC EXEC!
in the example).

If no such EXEC file exists for the first word typed in, DMSINT makes
a further check using the CHS abbreviation-check routine, DMSINA. If,
for example, the first word typed in had been 'E', DHMSINT looks up ‘'E!
via the DMSINA routine. If an equivalent is found for 'E', DMSINT looks
for an EXEC file with the name of the equivalent word (for example, EDIT
EXEC); if such a file is found, DMSINT adjusts register 1 as described
above to call EXEC and substitutes the equivalent word, EDIT, for the
first vword typed in. Thus, if 'E' is a valid abbreviation for 'EDIT'
and the user has an EXEC file called EDIT EXEC, he invckes this when he
merely types in 'E' from the terminal.

If no EXEC file is found either for the entered command name or for
any equivalent found by DMSINA, DMSINT leaves the terminal command as
Processed by DMSSCN and then issues an SVC 202 tc pass control to DMSITS
which, in turn, passes control to the appropriate command progranm.

2-64 IBM VM/370 System Logic and Program Determination--Volume 2

When the command terminates execution, or if DMSITS cannot execute it,
the return code is passed in register 15.

A zero return code indicates successful completion of the command.

A positive return code indicates that the command was completed, but
with an apparent error; and a negative code returned by DMSITS indicates
that the typed in command could not be found or executed at all.

In the last case, DMSINT assumes that the command is a CP coamand and
issues a DIAGNOSE instruction to pass the command line to the CP
environment. If the command is not a CP command, DMSINT calls DMSCWR to
type a message indicating that the command is unknown and the main
control loop of DMSIKT is entered at the beginning.

If the return code from DMSITS is positive or zero, DMSINT saves the
return code briefly and calls module DMSAUD to update the Master File
Directory (MFD) on the user's appropriate user's disk. DMSINT also
frees the TXTLIB chain and releases pages of storage if required.

After updating the master file directory, DMSIRNT checks the return
code that was passed back. If the code is zerc, DMSINT types a ready
message and the processor time used by the given command. control is
passed to the beginning of the mainm control 1lcop of DMSINT. If the
return cocde is positive, an error message 1is typed, along with the
processor time used. The command caused the typing of an error message
of the format: DMSxxxnnnt 'text' where DMSxXxX is the module name, naon
is the message identification number, t is the message type, and "text!
is the message explaining the error. Control is then passed to the
beginning of the main control loop.

Method of Operation for DMSITS

CMSITS (INTSVC) is the CMS system SVC handling routine. Since CHMS is
SVC driven, the SVC interrupticn processor 1is more complex than the
other interruption processors.

The general operation of DMSITS is as follows:

1. The SVC new PSW (low-storage location X'60'j contains, in the
address field, the address of DMSITS1. Thus, the DMSITS routine is
entered whenever a supervisor call is executed.

2. DMSITS allocates a system and user save area, as described below.
The user save area is a register save area used by the routine,
which is invoked later as a result of the SVC call.

3. The called routine is invoked.

4. Upon return from the called routine, the save areas are
deallocated.

5. Control is returned to the caller (the routine which originally
made the SVC call).

The following expands upon various features of the general operation
that has just been described.

CMS Method of Operation and Program Organization 2-65

TYPES OF SVCS AND LINKAGE CONVENTIONS

The types of SVC calls recognized by DMSITS, and the linkage conventions
for each are as follows:

SYC 201: When a called routine returns contrcl to DMSITS, the user
storage key may be in the PSW. Because the called routine may also have
turned on the problem bit in the PSW, the most convenient way for DMSITS
to restore the system PSW is to cause another interruption, rather than
to attempt the privileged Load PSW instruction. DESITS does this by
issuing SVC 201, which causes a recursive entry into DMSITS. DMSITS
determines if the interruption was caused by svC 201, and if so,
determines if the SVC 201 was from within DHSITS. If both conditions
are met, control returns to the instruction following the SVC 201 with a
PSW that has the problerm bit off and the system key restored.

SVC 202: SVC 202 is the most commonly used SVC in the CHMS system. Tt is
used tfor calling nucleus resident routines and for calling routines
written as commands.

A typical coding sequence for an SVC 202 call is the following:

LA R1,PLIST
SvC 202
DC ALU (ERRADD)

Whenever SVC 202 is called, register 1 must point to a parameter list
(PLIST). The format of this parameter 1list depends wupon the actual
routine or coammand being called, but the SVC handler examines the first
8 bytes of the list to find the name of the routine or command being
called. It searches for the routine or module as described for svc 201.

The DC ALY (address) following the SVC 202 is opticnal, and wmay be
omitted if the programmer does not expect any errors to occur in the
routine or command being called. DMSITS can determine whether this DC
was inserted by examining the byte following the SVC call. If it is
nonzero, then it is an instruction; if it is zero, then it is a "LC
AL4 (address)n.

S¥C 203: SVC 203 is used by CMS macros to perform various internal
system functions. SVC 203 is an SVC call for which no parameter list is
Frovided. An example is DMSFREE, for which the Farameters are passed in

registers 0 and 1.
A typical sequence for an SVC 203 call follows:

SYC 203
DC H'code!?

The halfword decimal code following the SVC 203 indicates the
specific routine being called. DMSITS examines this halfword code as
follows: (1) the absolute value of the code is taken, using an LER
instruction, (2) the first byte cf the result is ignored, and the second
byte of the resulting halfword is an index into a branch table, (3) the
address of the correct routine is locaded, and control is transferred
there, as the called routine.

It is possible for the address in the SVC 203 index table to be zero.
In this case, the index entry contains an 8-byte routine or command
name, which is processed in the same way as the 8-byte name passed in
the parameter list passed to SVC 202.

2-66 IBM VM/370 System Logic and Program Determination--Volume 2

The sign of the halfword code indicates whether the programmer
expects an error return; if sc, the code is negative: if not, the code
is positive. FNote that the sign of the halfword code bhas no effect on
determining the routine which is to be called, tecause DMSITS takes the
atsolute value of the ccde to determine the called routine.

Because cnly the second byte of the absolute value of the code is
examined by DMSITS, seven bits (bits 1-7) are available as flags or for
other uses. For example, DMSFREE uses these seven bits to indicate such
things as conditional requests and variable requests. Therefore, DMSITS
considers the codes H'3' and H'259' to be identical, and handles thenm
the same as H'-3' and H'-259', except for error returms.

When an SVC 203 is invoked, DMSITS stores the halfword code into the
NUCON location CODE203, so that the called routine can interrogate the
seven bits made available to it.

USER-HANDLED SVCs: The programmer may use the HNDSVC macro to specify
the address of a routine that processes any SVC call for SVC nuambers 0
through 200 and 206 through 255.

If the HNDSVC macro is used, the linkage conventions are as required
by the user specified SVC-handling routine.

There is no way to specify a normal or error return from a
user-handled SVC routine.

0S MACRO SIMULATION SVC CALLS: CMS supports certain of the SVC calls
generated by 0S macros, by simulating the effect of these macro calls.

The proper linkages are set up by the 0S macro generations. DHSITS
does not recognize any way to specify a normal or error return from an
0S macro simulation SVC call.

DOS SVC CALLS: All SvC functions supported for CHMS/DOS are handled by
the CMS module DMSDOS. DMSDOS receives control from DMSITS (the CMS SVC
handler) when that routine intercepts a DOS SVC code and finds that the

DOSSVC flag in DOSFLAGS is set in NUCON.

DMSDOS acquires the specified SYC code from the OLDPSW field of the
current SVC save area. Using this code, DMSLOS computes the address cf
the routine where the SVC is to be handled.

Many CMS/DOS routines (including DMSDOS) are contained in a
discontiguous shared segment (DCSS). Most SVC ccdes are executed within
DMSDOS, but scme are in separate modules external to DMSDOS. If the SVC
code requested is external to DMSDOS, its address is computed using a
table called DCSSTAB; if the code requested is executed within DMSDOS,
the table SVYCTAB is used to compute +the address of the code to handle
the SVC.

DOS SVC calls are discussed in more detail in "Simulating a DOS
Environment Under CMS"™ in this section.

INVALID S¥C CALLS: There are several types of invalid SVC calls
recognized bty DMSITS. These are:

e Invalid SVC number. If the SVC number does not fit into any of the
classes described above, it is not handled by DMSITS. An error
message is displayed at the terminal, and control is returned
directly to the caller.

e 1Invalid routine name in SVC 202 parameter list. If the routine named
in the SVC 202 parameter 1list is invalid or cannot be found, then

CMS Method of Operation and Program Organization 2-67

DMSITS handles the situation in the same way it handles an error
return from a legitimate SVC routine. The error code is -3.

e TInvalid SVC 203 code. If an illegal code follows SVC 203, an error
message is displayed, and the ABEND routine is called to terminate
execution.

SEARCH HIERARCHY FOR SVC 202

When a program issues SVC 202, and passes a routine or command name in
the parameter 1list, DMSITS must search for the specified routine or
command. (In the case of SVC 203 with a zero in the table entry for the
specified index, the same logic must be applied.)

The search crder is as follows:

i. A check 1s made to see if there is a routine with the specified
name currently in the system transient area. TIf so, then tontrol
is transferred there.

2. The system function name table is searched to see if a command by
this name is nucleus resident. If successful, control goes to the
specified nucleus routine.

3. A search is made for a disk file with the specified name as the
filename, and MODULE as the filetype. The search is made in the
standard disk search order. If this search is successful, then the
specified module is loaded by LOADMOD and control passes to the
storage location now occupied by the command.

4. If all searches so far have failed, then TMSINA (ABBREV) is called
to see if the specified routine name is a valid system abbreviation
for a system command or function. User-defined abbreviations and
synonyms are checked at the same time. If this search is
successful, then steps 2 through 4 are repeated with the full
nonabbreviated name.

5. 1If all searches fail, then an error code of -3 is forced.

USER AND TRANSIENT PROGRAM AREAS

There are two areas which can hold program modules which are loaded by
LOADMOD from the disk. These are called the user program area and the
transient program area.

The user program area starts at location X'2C000' and extends upward
to the loader tables. However, the high-address end of that area can be
allocated as free storage by DMSFREE. Generally, all user programs and
certain system commands, such as EDIT and COPYFILE, execute in the user
program area. Because only one program can be executing in the user
program area at one time, unless it is an overlay structure, it is
impossible for one program in the user program area to invoke, by means
of SVC 202, a module which is also intended to execute the user progran
area.

The transient program area is two pages, running from location

X'RO00' to location X'10000'. It provides an area for system commands
that may also be invoked from the user Pregram area by means of an SVC

2-68 1IBM VM/370 System Logic and Program Determination--Volume 2

202 call. Por example, a program in the user program area may invoke
the RENAME command, because this command is loaded into the transient
program area.

The transient program area also handles certain 0S macro simulation
SVYC calls. If DMSITS cannot find the address of a supported O0S macro
simulation SVC handling routine, it calls LOADMOD to load the file
DMSSVT module into the transient area, and lets that routine handle the
SvYC.

A program in the transient program area may not invoke another
program intended to execute in the transient program area, including CS
macro simulation SVC calls that are handled by DMSSVF. Thus, for
example, a program in the transient program area may not invoke the
RENAME command. In addition, it may not invoke the 0S macro WTO, which
generates an SVC 35, which is handled by DMSSVT.

There is one further functional difference between the use of the two
program areas. DMSITS starts a program in the user program area so
that it is enabled for all interruptions. It starts a program in the
transient program area so that it is disabled for all interruptioms.
Thus, the individual program may have to use the SSM (Set System Mask)
instruction to change the current status of its system mask.

CALLED ROUTINE START-UP TABLE

Figures 10 and 11 show how the PSW and registers are set up when the
called routine is entered.

F Al
| | Systenm | Storage | Problem |
| Called Type | Mask ! Key | Bit |
| I
ISVC 202 or 203 | Disabled | System | off |
| - Nuc residentl| 1 |
| |
|SYC 202 or 203 | Disabled | User | Off |
! — Transient ! ! ! |
| area MODULE | | | |
| i
jSVC 202 or 203 | Enabled | User i Off i
| — User Area { i | I
{ {
|User—handled | Enabled | User | Off |
| |
{0S - Nuc res | Disabled | System | off |
| |
|OS - in DMSSVT | Disabled | System | off |
L '}

Figure 10. PSW Fields when Called Routine is Started

RETURNING TO THE CALLER
Wher the called routine is finished processing it returns centrol to
DMSITS, which then must return control to the caller.

RETURN LOCATION: The return is effected by loading the original SVC old
PSW (which was saved at the time DMSITS was first entered), after

CMS Method of Operation and Program Organization 2-69

r L
| Type | 0-1 | 2- 11 |} 12 i 13 | 14 | 15 [
| | { | | { | I
| SVC 202 | Same |Unpredict-| RAddress | User | Return | Address |
{ or 203 | as lable | of | save | address | of |
{ { caller | | called | area | to | called |
{ | I | routine | | DMSITS | routine |
| |
Other	Same	Same	Address	User	Return	Same
	as	as { of	save	address	as	
{ caller	caller	called	area	to	caller	
			routine		DMSITS	{
[l i §

Figure 11. Register Contents when Called Routine is Started

Fossibly modifying the address field. How the address field is modified
depends upon the type of SVC call, and on whether the called routine
indicated an error return address.

For SVC 202 and 203, the called routine indicates a normal return by
means of a zero returned in register 15, and an €rror return by means of
a nonzero in register 15. If +the called routine indicates a normal
return, then DMSITS makes a normal return to the caller. If the called
routine indicates an error return, then DMSITS returns to the caller's
error return address, if one was specified, and abnormally terminates if
none was specified.

For SVC 202 not followed by "DC ALU(address)™, a normal return is
made to the instruction following the SVC instruction, and an error
return causes an abnormal termination. For SVC 202 followed by ®DC
ALY4 (address)", a normal return is made to the instruction following the
DC, and an error return is made to the address specified in the DC. 1In
either case, register 15 contains the return code passed by the called
routine.

For SVC 203 with a positive halfword code, a normal return is made
to the instruction following the halfword code, and an error return
causes an abnormal termipation. For SVC 203 with a negative halfword
code, both pormal and error returns are made to the instruction
following the halfword code. In any case, register 15 contains the
return code passed back by the called routine.

For €S macro simulation SVC calls, and for user—handled SVC calls, no
error return is recognized by DMSITS. As a result, DMSITS always
returns to the caller by 1loading the SVC 0ld PSW that was saved when
CMSITS was first entered.

REGISTER RESTORATION: Upon entry to DMSITS, all registers are saved as
they were when the SVC instruction was first executed. Upon exiting
from DMSITS, all registers are restored to the values that vere saved at
entry.

The exception to this 1is register 15 for SVC 202 and 203. Upon
return to the «caller, register 15 contains the value that was in
register 15 when the called routine returned to DMSITS after it had
completed processing.

SYSTEM AND USER SAVE AREA FORMATS

Whenever an SVC call is made, DMSITS allocates two save areas for that
Particular SVC call.

2-70 IRM VM/370 System Logic and Pregram Determination--Volume 2

DMSITS uses the system save area (DSECT SSAVE) to save the value of
the SYC old PS¥ at the time of the SVC call, the caller's registers at
the time of the call, and any other necessary control information.
Since SVC calls can be nested, there can be several of these save areas
at one time. The system save area is allocated in protected free
storage.

The user save area contains (DSECT EXTUAREA) 12 doublewords {24
fullwords), allocated in unprotected free storage. DMSITS does not use
this area at all, but simply passes to the called routine a pointer to
this area in register 13. Thus, the called routine can use this area as
a temporary work area, Or as a register save area. There is one user
save area for each system save area, and the latter contains a pointer
to the former in the USAVEPTR field.

Load and Execute Text Files

The CMS loader consists of a nucleus resident loader (DMSLDR), a file
and message handler prograa (DMSLIO), a library search prograa (DMSLIB),
and other subroutine programs. DMSLDR starts loading at the user first
location (AUSRAREA) specified in NUCON or at a user specified location.
When performing an IHCLUDE function, loading resumes at the next
available location after the previous LOAD, INCLUDE, or LOADHMOD.

The loader reads in the entire user's program, which consists of one
or more control sections, each defined by a type 0 ESD record (“card").
Zach control section contains a type 1 ESD card for each entry point and
may contain other control cards.

Once the user's program is in storage, the loader begins to search
his files for library subprograms called by the prograsm. The loader
reads the library subprograms into storage, relccating and linking them
as required. To Trelocate prograas, the loader analyzes information on
the SLC, ICS, ESD, TXT, and REP cards. To establish linkages, it
operates on ESD, and RLD cards. Information for end-of-load transfer of
control is provided by the ERD and LDT cards, the ENTRY control card,
START command, or RESET option.

The loader also analyzes the options specified on the LOAD and
INCLUDE commands. In response t¢ specified optiqns, the loader can:
e Set the load area to zeros before loading (CLEAR option).
e Load the program at a specified location {ORIGIN option) .
e sSuppress creation of the load-map file on disk (NOMAP option).

e Suppress the printing of invalid card images in the 1load map (NOINV
option).

e Suppress the printing of REP card images in the 1load map (NOREP
option).

e Load program into wtransient area™ (ORIGIN TRANS option).
e Suppress TXTLIB search (NOLIBE option) .
e Suppress text file search (NOAUTO option) .

e Txecute the loaded program (START option).

CMS Method of Operation and Program Organization 2-71

e Type the load map (TYPE option).

e Set the pregram entry point (RESET option) .

During its operation, the loader uses a loader table (REFTBL), and
external symbol identification table (ESIDTB), and a location counter
(LOCCNT). The loader table contains the names cf control sections and
entry points, their current location, and the relocation factor. {The
relocation factor is the difference between the compiler-assigned
address of a control section and the address of the storage location
where it is actually locaded.) The ESIDTB contains pointers to the
entries in REFTBL for the control section currently being processed by
the loader. The loader uses the location counter to determine where the
control section is to be loaded. Initially, the loader obtains from the
nucleus constant area the address (LOCCNT) of the next location at
which to start 1loading. This value is subsequently incremented by the
length indicated on an ESD (type0), END, or ICS card, or it may be reset
by an SLC card.

The loader contains a distinct routine for each type of input card.
These roulines perform caliculations using information contained in the
nucleus constant area, the location counter, the ESIDTB, the 1loader
table, and the input cards. Other 1loader routines perfornm
initialization, read cards into storage, handle error conditions,
provide disk and typevwritten output, search libraries, convert
hexadecimal characters to binary, process end-cf-file conditions, and
begin executicn of programs in core.

Following are descriptions of the individual subprocessors with LDR.

SLC CARD ROUTINE

Function :
This routine sets the 1location counter (LOCCT) +to the address
specified on an SLC card, or to the address assigned (in the REFTBL)
to a specified symbolic name.

Entry
The routine is entered at the first instruction when it receives
control from the initial and resunme loading routine. It is entered
at ORG2 whenever a loader routine requires the current address of a
symbolic location specified on an SLC card.

Operation
This routine determines which of the following situations exists, and
takes the indicated action:

1. The SLC card dces not contain an address or a symbolic nanme.
The SLC card routine branches, via BADCRD in the reference table
search routine, to the disk and type output routine (DMSLIO),
vhich generates an error message.

2. The SLC card contains an address only. The SLC card routine
sets the location counter (LOCCT) to that address and returns to
RD, in the initial and resume loading routine, +to read another
card.

3. The SLC card contains a nanme only, and there is a reference
table entry for that name. The SLC card routine sets LOCCT to
the current address of that name (at ORG2) and returns to the
initial and resume loading routine to get another card.

2-72 IBM VM/370 Systenm Logic and Program Determination--volume 2

4. The SLC card contains a name only, and there is no reference
table entry for that name. The SLC card routine branches via
ERRSLC to the Disk and Type Output routine (DMSLIO), which
generates an error message for that name.

5. The SLC card contains both an address and a name. If there is a
REFTBL entry for the name, the sum of the current address of the
name and the address specified on the SLC <card is placed in
LOCCT; control returns to the initial and resume loading routine
to get another card. If there is no REFTBL entry for the name,
the SLC «card routine branches via ERRSLC to the Disk and Tyfe
Output routine, which generates an error message for the name.

ICS CARD ROUTINE - C2AE1

Function
This routine establishes a reference table entry for “the
control-segment name on the ICS card if no entry for that naae
exists, adjusts the 1location counter to a fullword boundary, if
necessary, and adds the card-specified centrcl-segment length to the
location ccunter if necessary.

Entry
This routine has one entry point, named CZ2AE1. The routine is
entered from the initial and resume loading routine when it finds an
ICS card.

Operation
1. The routine begins its operation with a test of card type. If
the card being processed is not an ICS card, the routine
branches to the ESD card analysis routine; otherwise, processing
c¢ontinues in this routine.

2. The routine tests for a hexadecimal address on the ICS card. If
an address is present, the routine 1links to the DMSLSEA
subroutine to convert the address to binary, otherwise the
routine branches via BADCRD to the disk and type output routine
(DMSLIO).

3. The routine next 1links to the REFTBL search routine, which
determines whether there is a reference table entry for the
card-specified control-segment name. If such an entry is found,
the REPTBL search routine branches to the initial and resume
loading routine; otherwise, the REPTBL search routine places the
control-segment name in the reference table, and processing
continues.

4. The routine determines whether the card-specified
contrcl-segment length is zero or greater than zero. If the
length is zero, the routine places the current location counter
value in the reference table entry as the control segment's
starting address (ORG2), and branches to the initial and resume
loading routine. If the 1length is greater than 2zero, the
routine sets the current location counter value at a fullword
boundary address. The routine then places this adjusted current
location counter value in the reference table entry, adjusts the
location counter by adding the specified control-segment length
to it, and branches to RD in the initial and resume loading
routine to get another card.

CMS Method of Operation and Program Organization 2-73

ESD TYPE 0 CARD ROUTINE - C3AA3

Function

This routine creates loader table and ESID table entries for the
card-specified control section.

Eptry
This routine bhas one entry point, location C3RA3. The routine is
entered from the ESD card analysis routine.

Operation

2.

If this is the first section definition, its ESDID is proved.

This routine first determines whether a loader table (REFTBL)
entry has already been established for the card-specified
control section. To do this, the routine links to the REFTEL
search routine. The ESD type O card routine's subsequent
operation derends on whether there already is a REFTBL entry for
this control section. If there is such an entry, processing
continues with operation 5, below; if there is not, the REFTEL
search routine places the name of this control section in
REFIBL, and processing continues with operation 3.

The routine obtains the card-specified control section length
and performs operation 4.

The rcutine links to location C2AJ1 in the ICS card routine and
returns to C3AD4 to obtain the current storage address of the
control section from the REFTBL entry, inserts the REFTBL entry
position (N - where this is the Nth REFTBL entry) in the
card-specified ESID table location, and calculates the
difference between the current (relocated) address of the
control section and its card-specified (assembled) address.
This difference is the relocation factor; it is placed in the
REFTBL entry for this control section. If previous ESD's have
been waiting for +this CSECT, a branch is taken to SDDEF, where
the waiting elements are processed. A flag is set in the REFTEL
entry to indicate a section definition.

The entry found in the REFTBL is examined to determine whether
it had been defined by a COMMON. If so, it is converted from a
COMMON to a CSECT and performs operaticn 3.

If the entry had not been defined previocusly by an ESD type O,
processing continues at 3.

If the entry had been defined previously as other than CCMMON,
DMSLIO is called via ERRORM to print a warning message,
"DUPLICATE IDENTIFIER"™. The entry in the ESID talble is set
negative so that the CSECT will be skipped (that is, not loaded)
by the TXT and RLD processing routines.

ESD TYPE 1 CARD ROUTINE - ENTESD

Function

e s s e o v .

This routine establishes a 1loader table entry for the entry point
specified on the ESD card, unless such an entry already exists.

Entry
This routine is entered from the ESD card analysis rcutine.

2-T74

IBM VM/370 System Logic and Program Determination--Volume 2

Operation

Branches and 1links to REFADR to find loader table entry for
first section definition of the text deck saved by the ESD 0
routine.

The routine then adds the relocation factor and the address of
the ESD found in operation 1 or the address in LOCCNT if an ESD
has not yet been encountered. The sum is the current storage
address of the entry point.

The routine links +to the REFTBL search routine to find whether
there is already a REFTBL entry for the card-specified entry
point name. If such an entry exists, the routine perforas
operation 4. If there is no entry, the routine perforas
operation 5.

Upon finding a REFTBL entry that has been previously defined for
the card-specified name, the routine then compares the
REFTBL-specified current storage address with the address
computed in operation 2. If the addresses are different, the
rcutine branches and 1links to the DMSLIO routine (duplicate
symbel warning); if the addresses are the same, the routine
tranches to location RD in the initial and resume 1lcading
routine to read another card. Otherwise, it is assumed that the
REFTBL entry was created as a result of previously encountered
external references to the entry. The DMSLSBC routine is called
to resolve the previocus external references and adjust the
REFTBL entry. The entry roint name and address are printed by
calling DMSLIO.

If there is no REFTBL entry for the card-specified entry point
name, the routine makes such an entry and branches to the DMSLIOC
routine.

ESD TYPE 2 CARD ROUTINE - C3AH1

Function
This routine creates the proper ESID table entry for the
card-specified external name and places the name's assigned address

(ORG2) in the reference table relocation factor for that name.

Entry

This routine has two entry points: location C3AH1 and location ESDOOQ.
Location C3AH1 is entered from the RSD card analysis routine; this
occurs when an ESD type 2 card is being processed. Location ESDO0O is
entered from:

The ESD card analysis routine, when the card being processed is an
ESD type 2, and an absolute loading process is indicated.

The ESD type 0 card routine and ESD type 1 card routine, as the
last operation in each of these routines.

Operation

When this routine is entered at location C3AH1, it first links
to the REFTBL search routine to determine whether there is a
REFTBL entry for +the card-specified external name. If none is
found, the REFTBL search routine sets the undefined flag for the
new loader table entry.

CMS Method of Operation and Precgram Organization 2-75

2. The routine resets a possible WEAK EXTRN flag. The routine next
places the REFTBL entry's position-key in the ESID table. If
the entry bhas already been defined by means of an ESD type 0, 1,
5, or 6, processing continues at operation 4. Otherwise, it
continues at operation 3.

3. The relocated address 1is placed in the RELFAC entry in the
external name's REFTBL entry.

4. The ESD type 2 card routine then deteramines (at location ESDQOQ)
whether there is another entry on the ESD card. If there is
another entry, the routine branches to lccation CA3A1 in the ESD
card analysis routine <for further processing of +this card;
othervwise, the routine branches to 1location BRD in the initial
and resume loading routine.

Exits
This routine exits to location CA3A1 in the ESD card analysis routine
if there is another entry on the ESD card being processed, and exits
to location RD in the initial and resume loading routine if the ESD
card requires no further processing.

ESD TYPE 4 ROUTINE - PC

Function
This routine makes loader table and ESIDTAER entries for private code
CSECT.

Operation

The ESD Type 4 Card Routine:

1. The routine LDRSYM 1is called to generate a unique character
string number of the form 00000001, which is left imn the
external data area NXTSYM; it is greater in value than
previcusly generated syabol.

2. The CSECT is then processed as a normal type O ESD with the
above assigned nanme.

ESD TYPES 5 AND 6 CARD ROUTINE - PRVESD AND COMESD

Function
This routine creates reference table and ESIDTAR entries for common and
pseudo-register ESDs.

Operation
The ESD type 5 and 6 card routine:

1. Links to ESIDINC in the ESD type 0 card routine, to update the
number of ESIDTB entries.

2. Links to the REFTBL search routine tc determine whether a
reference table (REFTBL) entry has already been created. If there
is no entry, the REFTBL search routine places the name of the iten
in the REFTBL.

3. If the REFTBL search routine had to create an entry for the iten,
the ESD type 5 and 6 card routine indexes it in the ESIDTB, enters
the length and alignment in the entry, indicates whether it is a
PR or common, and branches to ESDOO in the ESD type 2 card routine
to determine whether the card contains additional ESD's to be

2-76 1IBM VM/370 System Logic and Program Determination--Volume 2

processed. If the entry is a PR, the ESD ¢type 5 and 6 card
routine enters its displacement and 1length in the REFTBL before
branching to ESDOO.

4. If the REFTBL already contained an entry, the ESD type 5 and 6
card routine indexes it in the ESIDTB, checks alignment and
branches to ESDOO.

Note: The PR alignment is coded and placed intc the REFTBL. It is an
error to encounter more restrictive alignment PR than previously
defined. 1A blank alignment factoer is translated to fullword alignment.

ESD TYPE 10 ROUTINE - WEAK EXTRN

WEAR EXTRN routine <calls the search toutine to find the EXTRN nanme
the loader table. If not found, set the WEAK EXTRN flag in the new
lcader table entry. Exit to ESDOO.

The WEA
in e

TXT CARD ROUTINE - C4anrl

Function

This routine has two functions: address inspection and placing text
in storage.

Entry
This routine has three entry points: location C4AA1, which is
entered from the ESD card analysis routine, and locations REPENT and
APR1, which are entered from the REP card routine for address
inspection.

Operation ‘

1. This routine begins its operation with a test of card type. If
the card being processed is not a TXT card, the routine branches
to the REP card routine; otherwise, processing continues in this
routine.

2. The routine then determines how many bytes of text are to be
placed in storage, and finds whether the 1loading process is
absolute or relocating. If the loading fprocess is absolute, the
routine performs operation 4, below; if relocating, the routine
performs coperation 3.

3. If the ESIDTB entry was negative, this is a duplicate to CSECT
and processing branches to RD. Othervise, the routine links to
the REFADR routine to obtain the relocation factor of the
current contrecl segment.

4. The routine then adds the relocation factor (0, if the loading
process is absolute) and the card-specified storage address.
The result is the address at which the text must be stored.
This routine also determines whether the address is such that
the text, when loaded starting at that address, overlays the
loader or the reference table. If a loader overlay or a
reference table overlay is found, the routine branches to the
LDRIO routine. If neither condition 1is detected, the routine
proceeds with address inspection.

CMS Method of Operation and Program Organization 2-717

The routine then determines whether an address has already been
saved for possible use as the end-of-load branch address. 1If an
address has been saved, the routine performs operation 7; if
not, the routine performs operation 6.

The routine determines whether the text address is below
location 128. If the address is below location 128, it should
not be saved for use as a possible end-of-load branch address,
and the routine performs operation 7; otherwise the routine
saves the address and then performs operation 7.

The routine then stores the text at the address specified
(absoclute or relocated) and branches to 1location RD in the
initial and resume loading routine to read another cargd.

e routine exits to two locations, as follows:

The routine exits to lccation RD in the initial and resusme
loading routine if it is being used to process a TXT card.

The routine exits to location APRIL in the REP card routine if
it is being used for REP card address inspection.

REP CARD ROUTINE — C4RA3

Function

This routine places text corrections in storage.

This routine has one entry point, location C4AA3. The routine is
entered from the TXT card routine.

2-78

This routine begins its operation with a test of card type. 1If
the card being rrocessed is not a REP card, the routine branches
to the RLD card routine; otherwise, processing continues in this
routine.

The rcoutine then links to the HEXE conversion rcutine to convert
the REP card-specified correction address from hexadecimal to
binary.

The rcutine then 1links to the HEXB conversion routine again to
convert the REP card-specified ESID from hexadecimal tc binary.

The routine then determines whether the 2-byte correction being
processed is the first such correction on the REP card. If it
is the first correction, the routine perforams operation 53
otherwise, the routine performs operation 6.

When the routine is processing the first correction, it links to
location REPENT in the TXT card routine, where the REP
card-specified correction address is inspected for 1loader
overlay and for end-of-load branch address saving; in addition,
if the loading process is relocating, the - relocated address is
calculated and checked for reference table overlay. The routine
then performs operation 7.

When the correction being processed 1is not the first such
correction on the REP <card, the routine branches to location
APR1 in the TXT card routine for address inspection.

IBM VM/370 System Logic and Program Determination--Volume 2

7. The routine then links to the HEXB conversion routine to convert
the correction from hexadecimal to binary, places the correction
in storage at the absolute (card-specified) or relocated
address, and determines whether there is another «correction
entry on the REP card. If there is another entry, the routine
repeats its processing from operation 4, above; otherwise, the
routine branches +to location RD in the initial and resume
loading routine.

Exits

When all the REP-card corrections have been processed, this routine
exits to location RD in the initial and resume loading routine.

RLD Card Routine — CSAA1

This routine processes RLD cards, which are produced by the assembler
when it encounters address constants within the program being
assembled. This routine places the current storage address (absolute
or relocated) of a given defined symbol or expression into the
storage 1location indicated by the assembler. The routine must
calculate the proper value of the defined symbol or expression and
the proper address at which tc store that value.

Entry '
This routine has two entry points, locations C5AA1 and PASSTWO.

Operation .
1. Location C5AA1 writes each RLD card into a work file (DMSLLR
CMSUT1). Exit to RD to process the next card.

Location PASSTWO reads an RLD card from the work file. At ECF
got tc C6AB6 to finish this file.

2. The routine uses the relocation header (RH ESID) on the card to
oktain the current address (absolute or relocated) of the symbogl
referred to by the RLD card. This address is found in the
reloccation factor section of the proper reference table entry.
If the RH BESIP is 0, the routine branches tc the LDRIC routine

(invalid ESD).

3. The rcutine uses the position header (PH ESID) on the «card to
obtain the relocation factor of the control segment in which the
DEFINE CONSTANT assembler instruction occurred. If the PH ESID
is 0, the routine branches to BADCRD in the REFTBL search
routine (invalid ESID). If the ESIDTAB entry 1is negative
(duplicate CSECT), the RLD entry is skipped.

4. The routine next decrements the card-specified byte count by &4
and tests it for 0. If the count is now 0, the routine branches
to location RD in the initial and resume loading routine;
otherwise, processing continues in this routine.

5. The routine determines the length, 1in bytes, of the address
constant referred to in the RLD card. This length is specified
on the RLD card.

6. The routine then adds the relocaticn factor obtained in
operation 3 (relocation factor of the control segment in which
the current address of the symbol must be stored), and the
card-specified address. The sum is the current address of the
locaticn at which the symbol address must be stored.

CMS Method of Operation and Program Organization 2-79

The routine then computes the arithmetic value (symbol address
or expression value) that must be placed in storage at the
address calculated in operation 6, above, and places that value
at the indicated address. If the value is wundefined, the
routine branches to location DMSLSBB, where the constant is
added to a string of constants that are to be defined later.

The routine again decrements the byte count of information on
the RLD card and tests the result for zero. If the result is
zero, go to operation 2; otherwise, processing continues in this
routine.

The routine next checks the continuation flag, a part of the
data placed on the RLD card by the asseabler. If the flag is
on, the routine repeats its processing for a new address only;
the processing is repeated from operation 4. If the flag is
off, the routine repeats its processing for a new syabol; the
processing is repeated from operation 2.

This routine exits to location RD in the ipitial and resume loading
routine.

END CARD ROUTINE - C6AA1

Function
This routine saves the END card address under certain circumstances,
and initializes the loader to load another control segment.

Entry

This routine has one entry point, location C6AA1. The routine is
entered from the RLD card routine.

Operation

1.

2~80

This routine begins its operation with a test of card type. If
the card being processed is not an ERD card, the routine
branches to the LDT card routine; otherwise, processing
continues in this routine.

The routine then determines whether the END card contains an
address. If the card contains no address, the routine perforas
operation 7, below; otherwise, the routine performs operatiom 3.

The routine next checks the end-address-saved switch. If this
switch is on, an address has already been saved, and the routine
perfores operation 7. If the switch 1is off, the routine
performs operation 4.

The routine determines whether loading is absolute or relocated.
If the 1loading process is absolute, the routine perforas
operation 6; otherwise, the routine performs operation 5.

The routine 1links to the REFADR routine to obtain the current
relocation factor, and adds this factor to the card-specified
address.

The routine stores the address (absolute or relocated) in area
BRAD, for possible use at the end-of-load transfer of control to
the problem program.

IBM VM/370 System Logic and Program Determination--Volume 2

CONTROL

Function

This

Entry

This

Goes to location PASSTWO (in RLD routine) to process RLD cards.
The routine then clears the ESID table, sets the absolute load

flag on, and branches tc the location specified in a general
register (see "Exits").

routine exits to the location specified in a general register.
may be either of two locations:

Location RD in the initial and resume loading routine. This
exit occurs when the END card routine is processing an END card.

The location in the LDT card routine that is specified by that
routine's linkage to the END card routine. This exit occurs
when the LDT card routine entered this routine to clear the ESID
table and set the absolute load flag on.

CARD ROUTINE - CTLCRD1

routine handles the ENTRY and LIBRARY control cards.

routine has one entry point, location CTLCRD1. The routine is

entered from the LDT card routine.

Operations

The CMS function SCAN is called to parse the card.

2. If the card is not an ENTRY or LIBRARY card, the routine
determines whether the NOINV option (no printing of invalid card
imagjes) was specified. If printing is suppressed, control
passes tc¢ RD in the initial and resume loading routine, where
another card is read. If printing is not suppressed, control
passes to the disk and type output routine (DMSLIO), where the
invalid card image is printed in the load map. If the card is a
valid control card, processing continues.

ENTRY Card

3. If +the ENTRY name is already defined in REFTBL, its REFTBL
address is placed in ENTADR. Otherwise, a new entry is made in
REFTBL, indicating an undefined external reference (to be
resolved by later input or 1library search), and this REFTBL
entry's address is placed in ENTADR.

4. The control card is printed by calling DMSLIO via CTLCRD; it
then exits to RD.

LIBRARY Card
. Only nonobligatory reference LIBRARY cards are handled; any
others are considered invaligd.

6. Each entry-point name is individually isolated and is searched
for in the REFTBL. If it has already been 1loaded and defined,
nothing is done and the next entry-point name is processed.
Otherwise, the nonobligatory bit is set in the flag byte of the
REFTBL entry.

7. Processing continues at operation 4.

CM5 Method of Operation and Program Organization 2-81

REFADR ROUTINE (DMSLDRB)

Function

This routine computes the storage address of a given entry in the
reference table.

Entry
This routine has one entry point, location REFADR. The routine is
entered for several of the routines within the loader.

1. Checks to see if requested ESDID is zero. If so, uses LOCCHNT as
requested 1location; branches to the return location + U44;
otherwise continues this routine.

2. The routine first obtains, from +the indicated ESID table entry,

the position (n) of the given entry within the reference table
{where the given entry is +the nth REFTRL entry).

3. The routine then multiplies n by 16 (the number of bytes in each
REFTBL entry) and subtracts this result from +the starting
address of the reference table. The starting address of the
reference table 1is held in area TBLREF; this address is the
highest address in storage, and the reference table is always
built downward from that address.

4., The result of the subtraction in operation 2, above, is the
storage address of the given reference table entry. If there is
no ESD for the entry, goes to operation 5; otherwise, this
routine returns to the 1location specified by the calling
routine.

5. Adds an element to the chain of waiting elements. The element
contains the ESD data item information to be resolved when the
requested ESDID is encountered.

PRSERCH ROUTINE (DMSLDRD)

Function
This routine compares each reference table entry name with the given
name Jetermining (1) whether there is an entry for that name and (2)
what the storage address of that entry is.

Entry
This routine is initially entered at PRSERCH, and subsequently at
location SERCH. The routine is entered from several routines within

the loader.

Operation
1. This routine begins its operation by obtaining the number of
entries currently in the reference table (this number |is
contained in area TBLCT), the size of a reference table entry
(16 bytes), and the starting address of the reference table
(alvays the highest address in storage, contained in area
TBLREF) .

2-82 1IBM VM/370 System Logic and Program Determination--Volume 2

2. The routine then checks the number of entries in the reference
table. If the number is zero, the routine performs operation 5;
otherwise, the routine performs operation 3.

3. The routine next determines the address of the first (or next)
reference table entry to have its name checked, increments by
one the count it is keeping of name comparisons, and compares
the given name with the name contained in that entry. If the
names are identical, PRSERCH branches to the location specified
in the routine that 1linked to it. PRSERCH then returns the
address of the REFTBL entry; else PRSERCE performs operation 4.

4. The routine then determines whether there is another reference
table entry to be checked. If there is none, the routine
performs operation 5; if there is another, the routine
decrements by one the number of entries remaining and repeats
its operation starting with operatiom 3.

5. If all the entries have been <checked, and none contains the
given name for which this routine is searching, the routine
increments by one the count it is keeping of name comparisons,
places that new value in area TBLCT, moves the given name to
form a nev reference table entry, and returns to the calling
program.

Exits
This routine exits to either of two locations, both of which are
specified by the routine that linked to this routine. The first
location is that specified in the event that an entry for the given
name is found; the second 1location is that specified in the event
that such as entry is not found.

LOADER DATA BASES

ESD Card Ccdes (col. 25...)

Code Meaning
00 SD (CSECT or START)
01 LD {ENTRY)
02 ER (EXTRN)
04 PC (Private code)
05 CM (COMMON)
06 XD (Pseudo-register)
oA WX (WEAK EXTERN)

ESIDTB ENTRY

The ESD ID table (ESIDTB) is constructed separately for each text deck
processed by the 1loader. The ESIDTB produces a correspondence between
ESD ID numbers (used on RLD cards) and entries in the loader reference
table (REFTBL) as specified by the ZST cards. Thus, the ESIDTB is
constructed while processing the ESD cards. It is then used to process
the TXT and RLD cards in the text deck.

The ESIDTB is treated as an array and is accessed by using the ID
namber as an index. Each ESIDTB entry is 16 bits long.

CHS Method of Operation and Program Organization 2-83

Bits Meaning

0 If 1, this entry corresponds to a CSECT that has been previously
defined. A1l TXT cards and RLD cards referring to this CSECT in
this text deck should be ignored.

1 If 1, this entry corresponds to a CSECT definition (SD).

2 Waiting ESD items exist for this ESDID.

3 Unused.

4-15 REFTBL entry number (for example 1, 2, 3, etc.)

Bit 1 is very crucial because it 1is necessary to use the VALUE field
of the REFTBL if the ID corresponds to an ER, CM, or PR; but, the INFO
field of the REFTBL entry must be used in the ID corresponds to an SD.

10(0) |
= = = = = = = = = NAME — — — — — — — — — — !
I I
| {
18(8) 19(9) 1
I FLAG1 i INFO I
(I |
112 (C) 113 (D) |
f NOTE1 I VALUE I
1 ! i
116 (10) 117(11) I
| FLAG2 I ADDRESS {
1]

AR REFTBL entry is 20 bytes. The fields have the following uses:

NAME Field: Ccntains the symbolic name from the ESD data item.

FLAG1 BYTE
Loader ESD Routine
Code Code Label Meaning
7cC 00 XBYTE PR - byte alignment
7D 01 XHALF PR - halfword alignment
7E 03 XFULL PR - fullword alignment
7F 07 XDBL PR - doubleword alignment
80 05 XUNDEF Undefined symbol
81 04 XCXD Resolve CXD
82 02 XCOMSET Define common area
83 05 WEAKEXT Weak external reference
90 06 CTLLIB TXTLIBs not to be used to resolve names

INFO Field: Depends upon the type of the ESD item.

ESD Itenm INFO Field

Type Meaning

SD (CSECT or START) Relocation factor
LD (ENTRY) zZero

CM (COMMON) Maximum length

PR (Psuedo Register) -

2-84 IBM VM/370 System Logic and Program Determination--Volume 2

VALDE Field: dJdepends upon the type of the ESD item, as does the INFO

ESD Itenm YALUE Field
Type Meaning

SC (CSECT or START) Absolue address
LD (ENTRY) Absolue address
CM (COMMON) Absolue address
PR (Pseudo register) Assigned value

(starting from 0)

FLAG2 Byte
Bit Meaning Bit Meaning
0 OUnused 4 OUnused
1 OUnused 5 Name was located in a TXTLIB
2 Unused 6 Section definition entry
3 Unpused 7 ©Name specifically loaded from command line.

ADDRESS Field: Unused

Entries may be created in the loader reference table prior to the
actual defining of the symbol. For example, an entry is created for a
symbol if it is referenced by means of an EXTRN (ER) even if the syambol
has not yet been defined or its type known. Furthermore, common (CHM} is
not assigned absolute addresses until prior to the start of execution by
the START coammand.

These circumstances are determined by the setting of the flag byte;

if the symbol's value has not yet been defined, the value field
specifies the address of a patch control block (PCB).

PATCH CONTROL BLOCK (PCB)

These are allocated from free storage and pointed at from REFTBL entries
or other PCBs.

Byte Meaning

0-3 Address o¢of next PCB

5-7 Location of ADCON in storage
4 Flag byte

A11 address constant locations in loaded program for undefined symbols
are placed on PCB chains.

LOADER INPUT RESTRICTIONS

211 restrictions which apply to object files for the 0S linkage editor
apply to CMS loader input files.

Processing Commands that Manipulate the File
System

Figure 9 lists the CMS modules that perform either general file systes
support functions or that perform data manipulation.

CMS Method of Operation and Program Organization 2-85

Managing the CMS File System

A descripticn of the structure of the CMS file system and the flow of
routines that access and update the file system follows.

How CMS Files Are Organized in Storage

CMS files are organized in storage by three types of data blocks: the
file status table (FST), chain links, and file records. Figure 12 shows
how these types of data blocks relate to each other; the following text
and figures describe these relationships and the individual data blocks
in more detail.

FILE STATUS TABLES

CMs files consist of 800-byte records vwhose attributes are described in
the file status table (PST). The file status tatle is defined by DSECT
FSTSECT. The FST consists of such information as the filenanme,
filetype, and filemode of the file, the date on which the file was last
written, and whether the file is in fizxed-length or variable format.
Also, the PFST contains a pointer to the first chain link. The first
chain link is a block that contains addresses cf the data blocks that
contain the actual data for the file.

The FSTs are grouped into 800-byte blocks called FST Blocks (these
are sometimes referred to in listings as hyperblocks). Each FST block
contains 20 FST entries, each describing the attributes of a separate
file. Figure 13 shows the structure of an FST block and the fields
defined in the FST.

Master File Status File Status First Chain Nth Chain
Fiie Directory Table Block (FSTB) Table Entry Link (FCL}) Link (NCL)

NCL ////

Address of Addr
FSTB

FCL Address of
an 800-byte

CMS Record _]

—D-L Record 1 l Record 2 Record 3 [. Record n
I‘—_BOO—byte CMS Record Containing File Data tems —————————g

Figure 12. How CMS File Records Are Chained Together

2-86 IBM VM/370 System Logic and Program Determination--Volume 2

File Status

Table Block Fields in a File
Status Table Entry
FST 1
FILE
—————— —
FST 2 NAME
4 FILE
TYPE
FST 4
DATE LAST WRITTEN
FST5 Write Pointer 22 Read Pointer
(Number of Item) (Number of ltem)
Ei d 26 Number of
FST o ilemode ltems in File
Disk Address 30 Fixed 31 Flag
of 1st Chain Link Variable Byte
T {tem Length (F)
Max. tem Length (V)
FST 20 Number of Year
800-Byte Data Blocks

Figure 13. Format of a File Status Block; Format of a File Status Table

CHAIN LINKS

Chain 1links are 200- or 800-byte blocks of storage that chain the
records of a file in storage. There are two types of chain links: first
chain links and Nth chain links.

The first chain link points to two kinds of data. The first 80 bytes
of the first chain link contain the halfword addresses of the remaining
40 chain 1links used to chain the records of the file. The next 120
bytes of the file are the halfword addresses of the first 60 records of
the file.

The Nth <chain links contain only halfword addresses of the records
contained in the file.

Because there are 41 <chain 1links (of which the <first contains
addresses for only 60 records), the maximum size for any CMS file is
16,060 800-byte records.

CMS Method of Operation and Program Organization 2-87

CMS RECORD FORMATS

CMS records are 800-byte blocks containing the data that comprises the
file. TFor example, the CMS record may contain several card images cr
print images, each of which is referred to a record item. Figure 14
shows how chain links are chained together.

CMS records can be stored on disk in either fixed-length or
variable-length format. However, the two formats may not be mixed in a
single file.

Regardiess of their format, the items of a file are stored by CHS in
sequential order in as many 800-byte records as are required to
accommodate theam. Each record (except the last) is completely filled
and items that begin in one record can end on the next record. Figure
15 shows the arrangement of records in files for files containing
fixed-length records and files containing variable-length records.

The location of any item in a file containing fixed-length records is
determined by the formula:

' (Item Number - 1) x Record Length
locations = -———==-=—-—mom————m

where the gquotient is the number of the item and the remainder is the
displacement of the item into the file.

For variable-length records, each record 1is preceded by a 2-byte
field specifying the length of the record.

Disk Organization

CMS virtual disks (also referred to as minidisks) are blocks of data
designed to externally parallel the function of real disks. Several
virtual disks may reside on one real disk.

A CMS virtual machine may have up to 10 virtual disks accessed during
a terminal session, depending on user specifications. Some disks, such
as the S-disk, are accessed during CMS initialization; however, most are
accessed dynamically as they are needed during a terminal session.

PHYSICAL ORGANIZATION OF VIRTUAL DISKS

Virtual disks are physically organized in 8C0O-byte records. Records 1
and 2 of each user disk are reserved for IPL. Record 3 contains the disk
label. Record 4 contains the master file directory. The remaining
records on the disk contain user file-related information such as the
FSTs, chain links, and the individual file records discussed above.

2-88 IBM V4/370 Systemr Logic and Program Determination--Volume 2

Disk Address of
2nd Chain Link

Disk Address ot
3rd Chain Link

y
S

Disk Address of
40th Chain Link

Disk Address of
41st Chain Link

Disk Address of
1st Data Block

Disk Address of
2nd Data Block

)
A RS

Disk Address of
59th Data Block

Disk Address of
60th Data Block

Figure 14.

Data block structure for file consisting of fixed-length records

1st record T
800 | — — ~ —] 800
- —Z—nd_record _____ l
3rd reco;:i ———————— T
800 ——————————————:l————— 800
4th record T
5th record
800 b—-———————————————— — —— 310

Figure 15. Arrangement of Fixed-Length Records and Variable-Length

Records in Files

Chaimn

Linkage
Directory

Disk Address of
A+ Oth Data Block

Disk Address of
M+ 15t Data Block

Disk Address of
#\ 398 th Data Block

Disk Address of
¢ 399th Data Biock

A= {n-2) ® 400+ 61
where n = Chain Link Number

Format of the First Chain Link and Nth Chain Links

Data block structure for file consisting of variable-length records

S J——

1st record

|

800

.%_

CMS Method of Operation and Program Organization

2-89

THE MASTER FILE DIRECTORY

The master file directory (MFD) is the major file management table for a
virtual disk. As mentioned earlier, it resides on cylinder 0, track O,
record 4 of each virtual disk. Six types of information contained in
the master file directory:

e The disk addresses of the FST entries describing user files on that
disk.

e A U4-byte “"sentinel," which can be either PFFFD or FPFF. FFFD
specifies that extensions of the QMSK (described below) follow. FFFF
specifies that no QMSK extensions follow.

e Extensions to the QMSK, if any.

e General information describing the status of the disk:

- ADTNUM -- The total number of 800-byte blocks on the user's disk.

~ ADTUSED -- The number of blocks currently in use on the disk.

—~ ADTLEFT -- Number of blocks remaining for use (ADTNUM - ADTUSED) .

— ADTLAST -- Relative byte address of the 1last record in use on the
disk.

- ADTCYL -- Number of cylinders on the user's disk.

- Unit Type -- 1A 1-byte field describing the type of the disk: 08

for a 2314, 09 for a 3330.

- A bit mask called the QMSK, which keeps track of the status of the
records on disk. The QMSK is described in more detail below.

- Rnother bit map, called the QQMSK, which is used only for 2314
disks and performs a function similar to that of QMSK.

Figure 16 shows the structure of the master file directory. Pigure
12 shows the relationship of the Master File Directory, which resides on
disk, to data blocks brought into storage for file management purposes,
for example, FSTs and chain links.

KEEPING TRACK OF READ/WRITE DISK STORAGE: OMSK AND QQMSK

Because large areas of disk space need not be contiguous in CMS, but are
composed of 800-byte blocks chain-linked together, disk space management
needs to determine only the availability of blocks, not extents. The
status of the blocks on any read/write disk (which blocks are available
and which are currently in use) is stored in a table called QMSK. The
term QMSK 1is derived from the fact that a 2311 disk drive has four
800-kyte blocks per track. Ope block is a "quarter-track", or QTRK, and
a 200-byte area is a "quarter-quarter-track", or QQTRK. The bit mask
for 2314, 2319, 3340, or 3330 records is called the QMSK, although each
800-byte block represents less than a quarter of a track on these
devices.

2-90 IBM VM/37C System Logic and Program Determination--Volume 2

on a 2314 or 2319 disk, the blocks are actually grouped fifteen
800-byte blocks per evens/odd pair of tracks. An even/odd pair of tracks
is called a track group. On a 3330 disk, the blocks are grouped
fourteen 800-byte blocks per track. On a 3340 disk, the blocks are
grouped into eight 800-byte blocks per track.

When the system is not in use, a user's QMSK resides on the Master
File Directory; during a session it is maintained on disk, but also
resides in real storage. QMSK is of variable length, depending on how
many cylinders exist om the disk.

Each bit is associated with a particular block on the disk. The
first bit in QMSK corresponds to the first block, the second bit to the
second block, and so forth, as shown in Figure 17.

When a bit in QMSK is set to 1, it indicates that the corresponding
block is in use and not available for allocation. A O0-bit indicates
that the corresponding block is available. The data blocks are referred
to by relative block numbers throughout disk space management, and the
disk I/0 routine, DMSDIO, finally converts this number to a CCHHR disk
address.

A table called QQMSK indicates which 200 byte segments (QQTRK) are
available for allocation and which are currently in use. QQMSK contains
100 entries, which are used to indicate the status of up to 100 QQTEK
records. An entry in QQMSK contains either a disk address, pointing to
a QQTRK record that is available for allocation, or zero. QQMSK is used
only for 2314 files; for 3330, 3340, and 3350, the first chain link
occupies the first 200-byte area of an 8§00-byte block.

The QMSK and QQMSK tables for read-only disks are not brought into
storage, since no space allocation is done for a disk while it is
read-only. They remain, as is, on the disk until the disk is accessed
as a read/write disk.

CMS Method of Operation and Program Organization 2-91

Y

3 2 Bytes

/ Disk Address of 1st FST Block
Byte 0

Disk Address of 2nd FST Block (if any)

Disk Address of Nth FST Block (if any)

Sentinel

Disk Address of 1st QMSK extension (if any)
L]
.

Disk Address of Nth QMSK extension (if any)

L]
L]
L]
E Not used — Zero filled ~
T T
-
L]
L]
/ _L ADTNUM, ADTUSED, ADTLEFT, ADTLAST L
Byte 364 T (4 bytes each) I
/ Not used (zero)
Byte 380 / ADTCYL
Byte 382 / First 215 Bytes of QMSK
Byte 384 ‘:/—’——\ :J&

/ [UNIT-TYPE

Entire 200-Byte QQOMSK Table
(for 2314 only)

Byte 599

Byte 600

L

Figure 16. Structure of the Master File Directory

1bit 1 bit

QMSK for 2314 or 2319 QMSK for 3330

[0

-
1 bit t1 bit

where:
C = Cylinder
H = Head

-
-
-

-

-

-

R = Record

NNO| OOl
-
wha | o=olnve
-
-
UNO| N SOQ
OO WO NO O
NNO| PeO|O O
OND| N=O|NO O
WWO| =NOjo O]

W=o| vo oo
ol mogwoo
nuo| Nodroo
~N-—o| woguroo

OO OO NOO

DO mamONOCK

-
o ooNO
-

OO N=O OO

-

Bit Value Meaning

et 0 Block available L1
[1 Block in use

Number of OMSK Extensi Number of Cylinders on Disk

Required (if any) 2314 or 2319 3330 3340 3350
1- 1 - 6
12. 54 - 30
Z 55 - 96 31 - 54
3 97 - 13¢ 66 - 78
2 140 - 18, 79 - 102
183 - 203 103" - 126
B 127 _- 150
51 - 174
175 - 198
. 199 - 223
1 - 224 - 246

Figure 17. Disk Storage 2llocation Using the QMSK Data Block

2-92 1IBM VM/370 System Logic and Program Determination--Volume 2

DYNAMIC STORAGE MANAGEMENT: ACTIVE DISKS AND FILES

CHMS disks and files contained on disk are rhysically mapped using the
data blocks described above: for disks, the QMSK, QOMSK, and the MFD;
for files, the FST, chain links, and 800-byte file records. In storage,
all of this data is accessed by means of two DSECTs whose addresses are
defined in the DSECT NUCON, ADTSECT and AFTSECT.

Managing Active Disks: The Active Disk Table

The ADTSECT DSECT maps informatiocn in the active disk table (ADT). Tkis
information includes data contained in the MFD, FST blocks, the QMSK,
and QQMSK., The DSECT comprises of ten "slots," each representing one
CMS virtual disk. 12 slot contains significant information about the
disk such as a pointer to the MFD for the disk, a pointer to the first
FST block and pointers to the CMSK and QQMSK, if the disk is a R/W disk.
Also contained in ADTSECT is information such as the number of cylinders
on the disk, the number cf records on the disk.

Managing Active Files: The Active File Table

Each open file is represented in storage by an active file table (AFT).
The APT (defined by the AFTSECT DSECT) contains data found on disk in
FSTs, chain links, and data records. Also contained in the AFT is such
information as the address of the first chain 1link for the file, the
current chain link for the file, the address of the current data block,
the fileid information for the file. Figure 1 shows the relationship
between the AFT and other CMS data blocks.

CMS ROUTINES USED TO ACCESS THE FILE SYSTEHN

DHSACC is ihe contrel routine used to access a virtual disk. In
conjunction with DMSACM and DMSACF, DHSACC builds, in virtual storage,
the tables CMS requires for processing files contained on the disk. The
1ist below shows the logical flow of the main function of DMSACC.

ACCESS A VIRTUAL DISK: DMSACC
DMSACC: Scans the command line tc determine which disk is specified.

DMSLAD: Looks up the address of the ADT for the disk specified on the
command line.

DMSACC: Determines whether an extension to a disk has been specified on
the command line and ensures that it is correctly specified.

DMSLAD: In the case where an extension has been specified, calls DMSLAD
to ensure that the extension disk exists.

DMSLAD: Ensures that the specified disk is not already accessed as a R/¥
disk.

CMS Method of Cperation and Program Organization 2-93

DMSFNS: In the case where the specified disk is replacing a currently

accessed disk, closes any open files belonging to the duplicate disk.
DMSACC: Verifies the parameters remaining on the command line.

DMSALU: Releases any free storage belonging to the duplicate disk via a
call to DMSFRE. Also, clears appropriate entries in the ADT for use by
the new disk.

DMSACM: (Called as the first instruction by DMSACF) Reads, from the
Master File Directory, QMSK, and the QQMSK for the specified disk; also,
DMSACM updates the ADT for the specified disk using information from the
MFD.

DMSACF: Reads into storage all the FST blocks associated with the

specified disk.

DHSACC: Handles error processing or processing required to Treturn

control to DMSINT.

Handling I/0 Operations

CMS input/output operations for disk, tape, and unit record devices are
alvays synchronous. Disk and tape I/0 is initiated via a privileged
instruction, DIAGNOSE, whose function code requests CP to perfora
neécessary error recovery. Control is not returned to CHMS until the
operation is complete, except for tape rewind or rewind and unload
operations, which return control immediately after the operation is
started. No interruption is ever received as the result of DIAGROSE
I/0. The CS¥ is stored only in the event of an error.

Input/output operations to a card reader, card Punch, or printer are
initiated via a normal START I/0 instruction. After starting the
operation, CMS enters the wait state until a device end interruption is
received frcm the started device. Because the I/0 is spooled by CP, CHMS
does not handle any exceptional conditions other than not ready,
end-of-file, or forams overflow.

CMS input/cutput operations to the terminal may be either synchronous
Oor asynchronous. Output to the terminal is always asynchronous, but a
Frogram may wait for all terminal input/output operations to complete by
calling the console wait routine. Input from the terminal is usually
synchronous but a user may cause CMS to issue a read by pressing the
attention key. A program may also asynchronously stack data to be read
by calling the console attention routine.

UNIT RECORD I/0O PROCESSING

Seven routines handle I/0 processing for CMS: DMSRDC, DMSPUN, and DMSPRT
handle the READCARD, PUNCH, and PRINT commands and pass control to te
actual I/0O processors, DMSCIO (for READCARD and PUNCH) or DMSPIO (for
PRINT). DMSCIO and DMSPIO issue the SIO instructions that cause I/C to
take place. Two other routines, DMSIOW and DMSITI, handle
synchronization processing for 1I,/0 operations. Figure 18 shows the
overall flow of control for I/0 operations.

2-94 IBM VM/370 System Logic and Program Determination--Volume 2

DMSRDC
DMSPUN
DMSPRT Channel
DMSCIO
DMSPID
-
il Y "
DMSIO
S10 “
L .
- DMSITI
—P»
\ D

Figure 18. Flow of Control for Unit Record I/O0 Processing

The following are more detailed descriptions of the flow of control for
the read, punch, and print unit record control functions.

DMSRDC: Initializes block length and unit record size.

DMSCIO: Initializes areas to read records.

DMSCIO: Issues an SIO command to read a record.

DMSIQH: Sets the wait bit for the virtual card reader and load the I/0

old PSW from NUCON. This causes CMS to enter a wait state antil the
read I/0 is complete.

DMSITI: Ensures that this interrupt is for the virtual reader. 1If not,
the 1/0 old PSW is loaded, returning CMS to a wait state. If the
interrupt is for the reader, DMSITI resets the wait bit in the I/0 o014

pSW and loads it, causing control to return to DHSIOW.

DMSIOW: Places the symbolic name of the interrupting device in the PLIST
and passes control to the calling routine.

DMSCIO: Checks for SENSE information and handle I/0 errors, if
necessary.

CMS Method of Operation and Pregram Organization 2-95

DMSCBR: Displays a control record at the console.

DMSSCN: If another control record is encountered, formats it via DMSSCN.

—_——————

DMSCWR: Displays the new control record at the console.
DMSFES: Closes the file when end-of-file occurs.

DMSRDR: Issues a CP CLOSE command to close the card reader.

Punch a Card

DMSPUN: Ensures that a virtual punch 1is available; processes PUNCH

command options.

DMSSTIT: Verifies the existence of the file and returns its starting

address.

DMSPUN: If reguested, sets up a header record and calls DMSCHYR to write
it to the console.

DHSBRD: Reads a block of data into the read buffer; continues reading
until the buffer is filled.

DMSCIO: Initializes areas to punch records.
DMSCIO: Issues the SIO instruction to punch the contents of the buffer.

DHSCIO: Issues a call to DMSIOW to wait for completion of the punch I/0
operation.

DMSIOW: Sets the wait bit on for the virtual punch device and loads the
I/0 o0ld PSW from NUCON. This causes CMS to enter a wait state until the
Punch operatiocn completes.

DESITI: Ensures that this interrupt is for the punch. If not, the I/C
0ld PSW is loaded returning CMS to a wait state. If the interrupt is for
the punch, DMSITI resets the wait bit in the I/0 0ld PSW and then loads
the PSW, returning control to DMSIONW.

DMSIOW: Places the symbolic name of the interrupting device in the PLIST
and passes control to DMSCIO.

DMSCIO: Checks for SENSE information and handles I/O errors, if any.

DMSPUN: Handles error returns and resets constants for the next punch

operation.

DHMSENS: Closes the file and returns control to the command handler,
DMSINT.

DHSPRT: Determines the device type of the printer. Checks out the

specified fileid. Checks out the options specified on the PRINT command
line.

DMSSCN: Verifies the existence of the file and returns its starting

———

address.

2-96 IBM VM/370 System Logic and Program Determination--Volume 2

DMSPRT: Determines the record size to be printed and sets up an
appropriate buffer area via a call to DMSFRE.

DMSFRE: Obtains storage space to be used as a buffer.

an 1uput file.

DMSBRD: Reads a record; continues reading until the buffer is filled.

When the buffer is filled, calls DMSPI0O to issue the SIO instruction to
begin the print operation.

DMSPIO: Issues the print SIO instruction and then calls DMSICW to wait

until the the I/0 operation completes.

DMSIOW: Sets the wvait bit for the wvirtual printer device and 1load the
I/0 01d PSW from NUCON. This causes CMS to enter a wait state until the
print operaticn completes.

DMSITI: Ensures that the interrupt is for the printer. If not, the I/0
0ld PSW is reloaded, returning CMS to a wait state. If the interrupt is
for the printer, DMSITI resets the WAIT bit in the I/0 0ld PSW and loads
that PSW, returning control to DMSIOW.

DMSIOW: Places the symbolic name of the device in the last word of the
PLIST and passes control to DMSPIO.

DMSPIO: Performs channel testing and handles errors. TIO instructions
and sense SIO instructions are issued during the test pzocess;ng. These
operations are synchronized using DMSIOW and DHSITI in the manner
described atove. When the I/0 completes successfully, control returns

to DMSPRT.
DMSPRT: Determines whether all file records have been printed. If so,

control returns to the caller. Otherwise, the address of the buffer is
updated and more print operations are performed.

Printer Carriage Control Characters Used by DMSPIO

CMS supports the use of ASCII control characters and machine carriage
control characters for the Printed output. Part of the CHs
implementation depends upon the fact that the set of ASCII contrcl
characters has almost nothing in common with the set of machine control
characters. There are two exceptions to this, the characters X'C1' and
X'Cc3t, These two characters, when interpreted as ASCII control
characters, have the following meanings:

C1 = Skip to channel 10 before print.
c3 = Skip to channel 12 before print.

The same characters, when interpreted as machine control characters,
have the following meanings:

c1

Write, then skip to channel 8 after print.

€3 = Do not write, but skip to channel 8 immediately.

In printing lines containing carriage control characters, CMS has the
capability of operating in two modes. In the first mode, which may be

called ASCII control characters or machine control characters of either
type are recognized and properly interpreted, except that the tvwo

CMS Method of Operation and Program Organization 2-91

conflicting characters are always interpreted as ASCII control
characters. 1In the second mode, which may be called machine-only, only
machine control characters are recognized, and the two conflicting
characters are treated as machine.

The DMSPIO function uses a bit in the plist to indicate which of the
two modes is in effect for printing.

The PRINTL macro always uses ASA control character or machine control
character mode.

The PRINT command with the CC option always runs in ASCII control
character or machine control character mode.

0S simulation output, which is used, for example, by the MOVEFILE
command, uses the RECFM field in the DCB or in the FILEDEF coamand to
determine which mode is to be used. If FA, VA, or UA is specified, then
ASCII control character or machine control character mode is used. If
FM, VM, or UM is specified, then machine-only mode is used. If no
control character specification is included with the RECFM, then it is
assumed that the ontpnt line begins with a valid data character, rather
than with a control character, and single spacing is always used.

Handling Interruptions

Figure 9 lists the CMS modules that process interruptions for CMS. CHMS
modules are described briefly in "CMS Module Description." svCc 9
interruption processing is described in "Maintaining an Interactive
Console Environment.®

Disk 1/0 in CMS

Files residing on disk are read and written using DMSDIO. DMSDIO has
two entry points: DMSDIOR, which is entered for a read I/0O operation,
and DMSDIOW, which is entered for a write operation.

The actual disk I/O operation is performed using the DIAGNOSE code 18
instruction. A return code of 0 from CP indicates a successful
completion of the I/O operation. If the I/0 1is not successful, CP
performs error recording, retry, recovery, or ABEND procedures for the
virtual machine.

READ OR WRITE DISK I/0

DMSDIO: Initializes the CCW to perform read operations.

DMSLAD: Obtains the address of the disk from which to read or write.

DMSDIO: Determines the size of the record to be read or written.

DMSFRE: Gets enough storage to contain the record if the request is for
a record longer than 800 bytes.

DMSDIO: Reads records continually until all records for the file have

A4 4

been read.

2-98 IBM VM/370 System Logic and Program Determination-—-Volume 2

DMSFRE: Returns the buffer to free storage if the record was longer than
800 bytes.

DMSDIO: Returns to the caller.

Managing CMS Storage

DMSFRE handles requests for CMS free storage. The sections of CHBS
storage have the following uses:

DMSNUC (X'00000' to approximately X'03000') - This is the nucleus
constant area. It contains pointers, flags, and other data
maintained by the various system routines.

Low—-core DMSFREE free storage area (approximately X'03000' to
X'0EQ00') - This area is a free storage area, from which requests

from DMSFREE are allocated. The top part of this area contains the
file directory for the system disk (SSTAT). If there is enough room
(as there will be in most cases), the FREETAB table also occupies
this area, Jjust below the SSTAT.

Transient program area (X'0EC00' to X*10000%) - Because it 1is nct
essential to keep all nucleus functions resident in storage all the
time, some of them are made "transient." This means that when they
are needed, they are loaded from the disk into the transient program
area. Such programs may not be longer than two pages, because that

is the size of the transient area. (A page is 4096 bytes of virtual
storage.)
CMS nucleus (X*10000' to X'20000') - Segment 1 of storage contains

the reentrant code for the CMS nucleus routines. In shared CHMS
systems, this is the protected segment. That is, this segment must
consist only of reeatrant code, and may not be modified wunder any
circumstances. This fact implies certain system restrictions for
functions which require that storage be modified, such as the fact
that DEBUG breakpoints or CP ADSTOP commaads cannot e placed in this
segment, in a saved systenm.

User program area (3°20000®' +to loader tab ~ User programs are
loaded intc +this area by the LOAD comman Storage allocated by
means of the GETMAIN macro instruction is taken from this area,
starting from the high address of the wuser prograa. In addition,
this storage area can be allccated from the top down by DMSFREE, if
not enough storage is available in the low-core DMSFREE storage area.
Thus, the effective size of the user program area is reduced by the
amount of free storage which has been allocated from it by DMSFREE.

Loader tables (top pages of storage) - The tor of storage is accupied
by the 1loader tables, which are required by the CHS loader. These
tables indicate which modules are currently loaded in the user
program area (and the transient program area after a LOAD command) .
The size of the loader tables can be varied by the SET LDRTELS
command.

TYPES OF ALLOCATED FREE STORAGE

Free storage can be allocated by means of the GETMAIN or DMSFREE macros.

Storage allocated by means of the GETMAIR macro is taken from the

user program area, beginning with the high address of the user progras.

CMS Method of Operation and Program Organization 2-99

Storage allocated by means of the DMSFREE macro can be taken from
several areas.

First, DMSFREE requests are allocated from the low-address free
storage area. If requests cannot be satisfied from there, they will be
satisfied from the user program area.

In addition, requests are further broken down between requests for
user storage and nucleus storage, as specified in the TYPE parameter of
the DMASFREE macro. These two types of storage are kept in separate 4K
pages. It is possible, if there are no 4K pages completely free in lcw
storage, for no storage of one type to be available in 1low storage,
while there is storage of the other type available there.

GETMAIN FREE STORAGE MANAGEMENT POINTERS

All GETMAIN storage is allocated in the user program area, starting from
the end of the user's actual program. Allocation begins at the location
pointed to by NUCON pointer MAINSTRT. The location MAINHIGH in RUCON is
the pointer to the highest address of GETMAIN storage.

When the STRINIT macro is executed, both MAINSTRT and MAINHIGH are
initialized to the end of the user's program, in the user program area.
As storage is allocated from the . user program area to satisfy GETMAIN
requests, the MAINHIGH pointer is adjusted upward. Such adjustments
are alvays in amultiples of doublewords, so that this pointer is alwvays
on a doubleword boundary. As the allocated stcrage is released, this
Fointer is adjusted downward.

The pointer MAINHIGH can never be higher than FREELOWE, the pointer
to the lowest address of DMSFREE storage allocated in the user program
area. If a GETMAIN request cannot be satisfied without extending
MAINHIGH above FREELOWE, GETMAIN takes an error exit, indicating that
insufficient storage is available to satisfy the request.

The area between MAINSTRT and MAINHIGH may contain Llocks of storage
that are not allocated, and that are therefore available for allocation
by a GETMAIN instruction. These blocks are chained together, with the
first one pointed to by the KUCON location MAINLIST.

The format of an element on the GETMAIN free element chain 1is as
follows:

4 bytes
FREPTR —- pointer to next free
0(0) element in the chain, or 0
if there is no next element
FRELEN -- length, in bytes, of
4 (4) this element

Remainder of this free element

¢ 2 0 ————— . — —n o =\
S 8 e e ——d \/

2-100 1IBM VM/370 System Logic and Program Determination--Volume 2

DMSFREE FREE STORAGE POINTERS

The pointers FREEUPPR and FREELOWE in NOUCOR indicate the amount of
storage which DMSFREE has allocated from the high portion of the user
program area. These pointers are initialized +to the teginning of the
system loader tables.

The pointer FREELOWE is the pointer to the lcwest address of DMSFREE
storage in the user program area. As storage is allocated froa the user
program area to satisfy DMSFREE requests, this pointer is adjusted
downward. Such adjustments are always in multiples of 4K, so that this
pointer is always on a 4K boundary. As the allocated storage is
released, this pointer is adjusted upward when whole 4K pages are
completely free.

The pointer FREELOWE can never be lower than MAINHIGH, the pointer to
the highest address of GETHAIN storage. if a DHSFREE reguest camnmot be
satisfied without extending FREELOWE below MAINHIGH, then DMSFREE takes
an error exit, indicating that insufficient storage is available to

satisfy the request.

The PREETAB free storage table is kept in free storage, usually Jjust
below the master file directory for the system disk. If there was no
space available there, then FREETAB was allocated from the top of the
user program area. This table contains one kyte <for each page <cf
virtual storage. Eack such byte contains a code indicating the use of
that fage of virtual storage. The codes in this table are as follows:

USARCODE (4): If the page is part of the user prcgram area.

In these cases, the page is assigned to system storage, system code,
or the loader tables.

Other DMSFREE storage pointers are maintained in the DMSFRT control
section, in NUCON. The most important fields there are the four chain
header blocks.

Four chains of elements are not allocated to be associated with
DMSFREE storage: The locw-storage nucleus chain, the low-storage user
chain, the high-storage nucleus chain, and the high-storage user chain.
For each of these chains, exists a control block consisting of four
words, with the following format:

CMS Method of Operation and Program Organizatiocn 2-101

-
|POINTER -- rointer to the first

0(0) 1 free element on the chain, or
| zero, if the chain is empty.

.
|
|
|

i I
| NUM -- the number of elements on |
44y the chain. |
| |
| l
| MAX -- the value in this werd is |
8 (8) | the size of the largest free {
| element on the chain. |
| |
| PLAGS- | SKEY - | TCODE -| Unused |
12(C) | Flag |Storage |FREETAB | |
| byte | key | code { |
L]
Thece fields have the follcowing meanings and uses:

POINTER This field points to the first element on this chain of free
elements. If there are no elements on this free chain, then
the POINTER field contains a zero.

NOHM This field contains the number of elements on this <chain of
free elements. If there are no elements on this free chain,
then this field contains a zero.

MAX This field is used for the purpose of avoiding searches which
will fail. It contains the size, in bytes, of the largest
element on the free chain. Thus, a search for an element of a
given size will not be made if that size exceeds the MAX field.

FLAGS The following flags are used:

FLCLN (X'80")
Clean-up flag - This flag is set if the chain must be cleaned uf.
This is necessary in the following circumstances:

- If one of the two high-core chains contains a 4K page that is
pointed to by FREELOWE, then that page can be removed from the
chain, and FREELOWE can be increased.

- 211 completely non-allocated 4K pages are kept on the user
chain, by convention. Thus, if one of +the nucleus chains
(low-core or high-core) contains a full page, then this Page must
be transferred to the corresponding user chain.

FLCLB (X'40")
Clobbered flag - Set if the chain has been destroyed.

FLHC (X'20')
High-core chain - Set for both the nucleus and user high—-core
chains.

FLNU (X'10°')

Nucleus chain - Set for both the low-core and high-core nucleus
chains.

2-102 IBM VM/370 System Logic and Program Determination--Volume 2

FLPA (X'08"')
Page available - This flag is set if there is a full UX page
available on the chain. Note that this flag may be set even if
there is no such page available.

SKEY This one-byte field contains the storage key assigned to storage
on this chain.

TCODE This cne-byte field contains the FREETAB talkle code for storage on
this chain.

Each element on the free chain has the following format:

POINTER —-— pointer to the next

0 (0) element in the free chain

SIZE —-- size of this free

4{4) element, in bytes

Remainder of this free element

§ e e e — -
B e . - —— " e o]

When the user issues a variable length GETMAIN, the control program
reserves 6 1/2 pages for CMS usage; this is a designed and set value.
If the user wants more space, for exaample, for more directories, he
should free (from the high end of storage) some of the variable GETMAIN
area.

is indicated in the illustration above, the POINTER field points tc
the next element in the chain, or contains the value zero if there is no

next element. The SIZE field contains the size of this element, in
bytes.

All elements within a given chain are chained together in order of
descending stcrage address. This is done for two reasons:

1. Because the allocation search is satisfied by the first free
element that is large enough, the allocated elements are grouped
together at the top of the storage area, and prevent storage
fragmentation. This is particularly important for high-storage
free storage allocations, because it is desirable to keep FREELOWE
as high as possible.

2. 1If free storage does become somewhat fragmented, the search causes
as few page faults as possible.

As a matter of convention, completely nonallccated 4K pages are kept
on the user chain rather than the nucleus chain. This is because
requests for large blocks of storage are made, most of the time, froa
user storage rather than from nucleus storage. Nucleus requests need to
break up a full page less frequently than user requests.

CMS Method of Operation and Program Organization 2-103

TCMSFRE METHOD OF OPERATION

A description of the algorithms which allocate and release blocks
follows. The descriptions are based on the assumption that neither
AREA=LOW nor AREA=HIGH was specified in the DMSFREE nmacro call. If
either was specified, then the algorithm must be appropriately modified.

ALLOCATING USER FREE STORAGE: When DMSFREE with TYPE=USER (the default)
is called, the fcllcwing steps are taken to satisfy the request. As
soon as one oOf the steps succeeds, then processing can terminate.

DMSFRE:

1. Searches low-storage user chain for a block of the reguired size.

2. Searches the high-storage user chain for a block of the required
size.

3. Extends high-storage user storage downward into the user prograan
area, modifying FREELOWE in the process.

4. PFor fixed requests, there is nothing more to try. For variable
requests, DMSFRE puts all available storage in the user progranm
area cnto the high-storage wuser chain, and then allocates the
largest block available on either the high-storage user chain or
the low-storage user chain. The allccated block is not
satisfactory, if it is not larger then the minimum requested size.

ALLOCATING NUCLEUS FREE STORAGE: When DMSFREE with TYPE=NUCLEUS is
called, the following steps are taken in an attempt to satisfy the
request, until one succeeds. DMSFREE:

1. Searches the low-storage nucleus chain for a block of the required
size.

2. Gets free pages from low-storage user chain, if any are available,
and removes them to the low-storage nucleus chain.

3. Searches the high-storage nucleus chain for a block of the required
size.

4. Gets free pages from the high-storage user chain, if they are
availatle, and removes them to the highstorage nucleus chain.

5. Extends high-storage nucleus storage downward into the user program
area, modifying FREELOWE in the process.

6. For fixed requests, there 1is nothing more to try. Por variable
requests, DMSFRE puts all available pages <from the user chains and
the user program area onto the nucleus chains, and allocates the
largest klock available on either the low-storage nucleus chains or
the high-storage nucleus chains.

RELEASING STORAGE: When DMSFRET is called, the rlock teing released is
placed on the appropriate chain. At that point, the cleanup operation
is performed, if necessary, to advance FREELOWE, or to move pages from
the nucleus chain to the corresponding user chain.

Similar cleanup operations are performed, when necessary, after calls
to DMSFREE, as well.

2-104 IBM VM/370 System Logic and Program Determination--Volume 2

RELATIVE EFFICIENCY OF DMSFREE REQUESTS
The types of DMSFREE request in decreasing order of efficiency, are as
follows:

1. User fixed storage requests, any size.

2. Nucleuas fixed storage requests, for small blocks (less than one
page in size).

3. Nucleus fixed storage request, for large blccks.
4. User variable storage requests. (Variable requests are no less
efficient than fixed requests, if the maximum block size requested

can be allocated.

5. Fixed variable storage requests, if the maximum block size
requested cannot be allocated.

RELEASING ALLOCATED STORAGE

STORAGE ALLOCATED BY GETMAIN: Storage allocated by the GETMAIN macro

instruction may be released in any of the following ways:

e A specific block of such storage may be released by means of the
FREEMAIN macrce instruction.

e The STRINIT macro instruction releases all storage allocated by any
previous GETMAIN requests.

e Almost all CMS commands call the STRINIT routine. Thus, eXecuting
almost any CMS command causes all GETMAIN storage to be released.

STORAGE ALLOCATED BY DMSFREE: Storage allocated by the DMSFREE macro
instruction may be released in either of the following ways:

e 1 specific block of
DMSFRET macro instruct

such storage may he released by mean

ion.

e Whenever any user routine or CHS command abends (so that the routine
DMSABN is entered), and the ABEND recovery facility of the system is
invokead, all DMSFREE storage with TYPE=USER is released
automatically.

Except in the case of ABEND recovery, storage allocated by the DMSFREE
macro 1is never released automatically by the system. Thus, storage
allocated by means of this macro instruction should always be released
explicitly by means of the DMSFRET macro instruction.

DMSFRE SERVICE ROUTINES
The system uses the DMSFRES pacro instruction te request certain free

storage management services. The options and their wmeanings are as
follows:

e INIT1--DMSINS calls this option to 3invoke the first free storage
initialization routine, to allow free storage requests to access the

CMS Method of Operation and Program Organization 2-105

systen disk. Before this routine is invcked, no free storage
requests may be made. After-this routine has been invoked, free
storage requests may be made, but these are subject to the following
restraints until the second free storage management initializaticn
routine has been invoked:

-- All requests for user storage are changed to requests for nucleus
storage.

-- Only partial error checking is performed bty the DMSFRET routine.
In particular, it is possible to release a block that was never
allocated.

-- All requests that are satisfied in high stcrage must be temporary,
because all high storage allocated is released when the second
free storage initialization routine is invcked.

When CP's saved system facility is used, the CMS system is saved
at the point just after the system disk has been accessed. This
means that it is necessary for DMSFRE to be used before the size of
virtual storage is known, because the saved system can be used on any
size virtual machine. Thus, the first initialization routine
initializes DMSFRE so that limited functions can be requested, while
the second initialization routine performs the initialization
necessary to allow the full functions of DMSFRE to be requested.

INIT2--This option 1is <called by DMSINS to invoke the second
initialization routine. This routine is invoked after the size of
virtual storage 1is known, and it performs the initialization
necessary to allow all the functions of DHMSFRE to be used. The
second initialization routine performs the following steps:

—- Releases all storage that has been allocated in the highstorage
area.

~- Allocates the FREETAB free storage table. This table contains one
byte for each 4096-byte page of virtual storage, and so cannot be
allocated until the size of wvirtual storage is known. It is
allocated in the low-address free storage area, if there is enough
room available. If not, then it is allocated in the higher free
storage area. For a 256K virtual machine, FREETAB contains 64
bytes; for a 16 million byte machine, it contains #4096 bytes.

-- The PREETAB table is initialized, and all storage protection keys
are initialized.

-- All completely non-allocated 4K pages on the nucleus free storage
chain are removed to the user chain. Any other necessary cleaning
up operations are performed.

CHECK--This option can be called at any time for system debugging
purposes. It invokes a routine that performs a thorcugh check of all
free storage chains for consistency and correctness. Thus, it checks
to see whether any free storage pointers have been destroyed.

CKON--This option +turns on a flag which causes the CHECK routine
described in the preceding paragraph to be invoked each time any call
is made to DMSFREE or DMSFRET. This can be useful to pinpoint a
problem that is, for example, destroying free storage management
pointers. Care should be taken when using this option, because the
CHECK routine is coded to be thorough rather than efficient.

2-106 IBM VM/370 System Logic and Program Determination--Volume 2

Thus, after the CKON cption has been invoked, each call to DHSFREE or
DMSFRET takes many times as long to be completed as before. This can
impact the efficiency of system functionms.

e CKOPF--Use of this option +turns off the flag that was turned by the
CKON option, described in the preceding paragraph.

e UREC--This option is called by DMSABN during the ABEND recovery
process to release all USER storage.

e CALOC--This option is called by DMSABN after the ABEND recovery
process has been completed. It invokes a rcutine that returns, in
register 0, the number of doublewords of free storage that have been
allocated. This figure is used by DMSABN toc determine whether ABERND
recovery has been successful.

STORAGE PROTECTION KEYS

In general, the following rule applies: system storage is assigned the
storage key of X'F', while user storage is assigned the key of X'E'.
This is the storage key associated with the protected areas of storage,
not to be confused with the PSW or CAW key used to access that storage.

The specific key assignments are as follows:

s The NUCOR area is assigned the key of X'F', with the exception of a
half-page containing the OPSECT and TSOBLOKS areas, which has a key
of X'E'.

e Free storage allocated by DMSFREE is broken up into user storage and
nucleus storage. The user storage has a protection Xkey of X'E!,
while the nucleus storage has a key of X'F!'.

e The transient program area has a key of X'E'.

e The CHMS nucleus code has a storage key of X'F'. In saved systesms,
this entire segment is protected by CP from modification even by the
CHMS system, and so must be entirely reentrant.

e The user program area is assigned the storage key of X'E', except for
those pages which contain Nucleus DMSFREE storage. These latter
pages are assigned the key of X'F'.

s The loader takles are assigned the key of X'F°'.

CMS SYSTEM HANDLING OF PSW KEYS

The CMS nucleus protection scheme protects the CHS nucleus froa
inadvertent destruction by a user prograa. This mechanism, however,
does not prevent a user from writing in system storage intentionally.
Because a CMS user can execute privileged instructions, he can issue a
LOAD PSW (LPSW) instruction and load any PSW key he wishes. If a user
defeats nucleus protection in this way there is nothing to prevent his
program from:

e Modifying nucleus code

CMS Method of Operation and Program Organization 2-107

e Modifying a table or constant area
e Losing files by modifying a CMS file directory

In general, user programs and disk-resident CMS commands run with a
PSW key of X'E', while nucleus code runs with PSW key of X*0°'.

There are, however, some exceptions to this rule. Certain
disk-resident CMS commands run with a PSW key of X'0', because they need
to modify nucleus pointers and storage. On the other hand, the nucleus
routines called by the GET, PUT, READ and WRITE macros run with a user
PSW key of X'E', to increase efficiency.

Two macros, DMSKEY and DMSEXS, are available for changing the PSW
key. The DMSKEY macro changes the PSW key to the user value or the
nucleus value. DMSKEY NUCLEUS causes the current PSW key to be placed
in a stack, and a value of 0 to be Placed in the ©PSW key. DMSKEY USER
causes the current PSW key to be placed in a stack, and a value of X'E!
to be placed in the PSW key. DMSKEY RESET causes the top value in the
DMSKEY stack to be removed and re-inserted into the PSW.

It is a CMS requirement when a routine terminates, that +the DMSKEY
stack must be empty. This means that a routine should execute a DMSKEY
RESET macro instruction for each DMSKEY NUCLEUS macro instruction and
each DMSKEY USER macro instruction executed by the routine.

The DMSKEY key stack has a maximum depth of seven for each routine.
In this context, a "routine" is anything invoked by an SVC call. The
DMSEXS ("execute in system mode"™) macro instruction is wuseful in
situations where a routine is running with a user PSW key, but wishes to
execute a single instruction with the nucleus PSW key. The single
instruction may be specified as the argument tc the DMSEXS macro, and
that instruction is executed with a system PSW key.

CP HANDLING FOR SAVED SYSTEMS

The explanaticn of saved system nucleus protection depends on the VSK,
RSK, VPK and RPK:

1. Virtual Storage Key (VSK) - This is the storage key assigned by the
virtual machine using the virtual SSK instruction.

2. Real Storage Key (RSK) - This is the actual storage key assigned
by CP to the 2K page.

3. Virtual PSW Key (VPK) - This is the PSW storage key assigned by tthe
virtual machine, by means of an instruction such as LPSW (Load
PSW) .

4. Real PSW Key (RPK) - This is the PSW storage key assigned by CP,
vhich is in the real hardware PS¥ when the virtual machine is
running.

When there are no shared segments in the virtual machine, then
storage protection works as it does on a real machine. RSK=VSK for all
Pages, and RPK=VPK for the PSW.

However, when there is a shared segment (as in the case of segment 1
of CMS in the saved system), it is necessary for CF to protect the
shared segment. For non-CMS shared systems, it does this by,
essentially, ignoring the values of the VSKs and VPK, and assigning the

2-108 1IBM VM/370 System Logic and Program Determination--Volume 2

real values as follows: RSK=0 for each page of the shared segment,
RSK=F for all other pages, and RPK=F, always, for the real PSW. The SSK
instruction is ignored, except to save the key value in a table in case
the virtual machine later does an ISK to get it back.

For the CHMS saved system, the RSKs and RPK are initialized as before,
but resetting the virtual keys has the following effects:

o If the virtual machine uses an SSK instruction to reset a VSK, CP
does the following: If the new VSK is nonzero, CP resets the RSK to
the value of the VSK; if the new VSK is zero, CP resets RSK to F.

e TIf the virtual machine uses a ' LPSW (or other) instruction +to reset
the VPK, CP does the following: If the new VPK is zero, CP resets the
RPK to the value of the VPK; if the new VPK is zero, CP resets RPK to
F.

e If the VPK=0 and the RPE=F, storage protection may be handled
differently. In a real machine, a PSW key of 0 would allow the
program to store into any storage location, no matter what the
storage key. But under CP, the program gets a protection violation,
unless the RPK of the page happens to be F.

Because of this, there is extra code in the CP program check handling
routine. Whenever a protection violation occurs, CP checks to see if
the following conditions hold:

~=- The virtual machine running 1is the saved CHS system, running
with a shared segment.

—— The VPK = 0. The virtual machine is operating as though its PSW
key is 0.

~-— The RSK of the page into which the store was attempted is
nonzero, and different from the RPK.

If any one of these three conditions fails +to hold, then the
protection viclation is reflected back to the virtwmal machine.

If all three of +these conditions hold, then the RPK (the real

protection key inp the real PSH) is reset tc the RSK of the ©page iante

eV alTj DSy

vhich the store was attempted.

EFFECT ON CMS: 1In CMS, this works as follows: CMS keeps 1its systen
storage in protect key F (RSK = VSK = F), and user storage in protect
key E (RSK = VSK = E).

When the CMS supervisor is running, it runs in PSW key 0 (VPEK = 0,
RPK = F), so that CMS gets a protection violation the first time it
tries to store into user storage (VSK = RSK = E). At that point, CP
changes +the RPK to E, and 1lets the virtual machine re-execute the
instruction which caused the protection violation. There is not another
protection violation until the supervisor goes back to storing into
system-protected storage.

RESTRICTIONS ON CMS: There are several coding restrictions which must
be imposed on CMS if it is tc run as a saved system.

The first and most obvious one is that CHMS may never modify segment
1, the shared segment, which runs with a RSK of C, although the VSK = F.

A less okvious, but just as important, restriction, is +that CMS may
never modify with a single machine instruction (except MVYCL) a section

CKS Method of Operation and Program Organization 2-109

of storage which crosses the boundary between two pages with different
storage keys. This restriction applies not only to SS instructionms,
such as MVC and ZAP, but also to RS instructions, such as STM, and to RX
instructions, such as ST and STD, which may have nonaligned addresses on
the System/370. An exception is the MVCL instruction wvwhich can be
restarted after crossing a page boundary because the registers are
updated when the paging exception occurs.

This restriction also applies to I/0 instructions. If the key
specified in the CCW is zero, then the data area for input may not cross
the boundary between two pages with different storage keys.

OVERHEAD: It camn be seen that this system is most inefficient when
"storage-key thrashing™ occurs -- when the virtual machine with a VPK of
0 jumps around, storing into pages with different VSK's.

ERROR CODES FROM DMSFREE, DMSFRES, AND DMSFRET

A o) oRc nuCow v n TN
A nonzerc return ccde, upen return from DMSPRFES, DMSPREBE or DMSPRET,

indicates that the request could not be satisfied. Register 15 contains
this return code, indicating which error has occurred. The codes below
apply to the DMSFRES, DMSFREE and DMSFRET macros.

Cade Error

1 DMSFREE —-- Insufficient storage space is available to satisfy the
request for ree stcrage . In the case of a variable request,
even the minimum request could not be satisfied.

2 DMSFREE or DMSFRET -- User storage pointers destroyed.
3 DMSFREE or DMSFRET -- Nucleus storage pointers destroyed.
4 DMSFREE -- An invalid size was requested. This error exit is

taken if the requested size 1is not greater than zero. In the
case of variable requests, this error exit is taken if the
minimum request is greater than the maximum regquest. However,
the error is not detected if DMSFREE is able to satisfy the
maximum regquest.

5 DMSFRET -- An invalid size was passed to the DMSFRET macro. This
error exit is taken if the specified length is nct positive.

6 DMSFRET -- The block of storage which is keing released was never
allocated by DMSFREE. Such an error 1is detected if one of the
following errors is found:

a. The block is not entirely inside either the free storage area
in low storage or the user program area between PREELOWE and
FREEUPPR.

b. The block crosses a page-boundary which separates a page
allocated for user stcrage from a page allocated for nucleus
type storage.

c. The block overlaps another block already on the free storage
chain.

7 DMSFRET —-— The address given for the block being released is not
a doubleword boundary.

8 DMSFRES -— An illegal request code vwvas passed to the DMSFRES

routine. Because all request codes are generated by the DMSFRES
macro, this error code should never appear.

2-110 IBM VM/370 System Logic and Program Determination--Volume 2

9 DMSFRE, DMSFRET, or DMSFRES -- An unexpected internal error
occurred.

THE DMSFRES MACRO

CHS uses the DMSFRES macro to request special internal free storage
management services. Use of this macro by non-syster routines causes
unpredictable results. The format is:

r
| label | DMSFRES | option |

where "option” is one of the following:
INIT1 Performs the CMS system first initialization routine.
INIT2 Performs the CMS system second initialization routine.

CHECK 1Invokes a routine that checks the validity of all current free
storage management pointers.

CKON Sets a flag that causes the CHECK to be invoked for each call to
DMSFREE or DMSFRET.

CKOFF Turns off the above flag.

UREC Assists ABEND recovery, by releasing all USER-type DMSFREE
storage allocations.

CALOC Assist ABEND recovery, by computing the total amcunt of allocated
storage, excluding the system disk MFD and the FREETAB table.

For a full discussion of the meanings of these options, refer to
"DHSFRE Service Routines."

THE DMSKEY MACRO

CMS uses the DMSKEY macro to modify the PSW stcrage protection key so
that the nucleus code can store data into protected storage. The format
is:

[label] | DMSKEY
|
|
|

{NUCLEUS[,NOSTACK]!
USER{ ,NOSTACK 11
LASTUSER[,NOSTACK]|
RESET}

T ——
e e e —

NUCLEUS The nucleus storage protection key is placed in the PSW, and
the 0ld contents of the second byte of the PS¥ is saved in a
stack. Use of this option allows the program to store into
system storage, which is ordinarily protected.

USER The user storage protection key is placed in the PSW, and the
0ld contents of the second byte of the PSW is saved in a
stack. Use of this option prevents the program from
inadvertently modifying nucleus storage, which is protected.

CMS Method of Operation and Program Organization 2-11

LASTUSER The SVC handler traces back through its system save areas for
the active user routine closest to the top of the stack, and
the storage key in effect for that routine is placed in the
PSW. The o0ld contents of the second tyte of the PSW is saved
in a stack. This orption should be wused only by systemr
rcutines that should enter a user exit routine.

NOSTACK This option may be used with any of the above optiomns to
prevent the system from saving the second byte of the curreat
PSW in a stack. If this is donme, then no DMSKEY RESET need be
issued later.

RESET The seccrd byte of the PSW is changed to the value at the top
of the PSW key stack, and removed from the stack. Thus, the
effect of the last DMSKEY NUCLEUS or USER or LASTUSER request
is reversed. This option should may not be used to reverse
the effect of a DMSKEY macro for which the NOSTACK option was
specified. A DMSKEY RESET pacro must be executed for each
DMSKEY NUCLEUS, USER or LASTUSER macro that was executed and
that did not specify the NOSTACK option. Failure to observe
this rule results ir program abnormal termination.

THE DMSEXS MACRO

System commands running in user protect status use the DMSEXS macro to
execute a single instruction with a system protect key in the PSW. This
macro instruction can be used in lieu of two DMSKEY macros. The format
is:

T 1

| [label] | DMSEXS | op-code,operands |

The op-code and the operands of the instruction to be executed must
be given as arguments to the DMSEXS macro.

For example, execution of the sequence,

USING NUCONW,0
CMSEXS 0OI,O0OSSFLAGS,COMPSWT

vould cause the OI instruction toc be executed with a zero protect key in
the PSH. This sequence would turn on the COMPSWT flag in the nucleus.
It would be reset with

DMSEXS NI,0SSFLAGS,255-COMPSHT

The instruction to be executed may be an EX instruction.

Register 1 cannot be used in any way in the instruction being
executed.

2-112 IBM YM/370 System Logic and Program Determination--Volume 2

Simulate Non-CMS Operating Environments

The following contains descriptions for: access method support for
non-CMS operating systems, CMS simulation of 0S functions, and CHMS
implementation of DOS/VS functions.

Access Method Support for Non-CMS
Operating Environments

0S ACCESS METHOD SUPPORT

An access method governs the manipulation of data. To make the
execution of 0S generated code easier under CMS, the processing program
maust see data as 0S would present it. For instance, when the processors
expect an access method to acquire input source records sequentially,
CMS invokes its segquential access method and passes data to the
processors in the format that the 0S access methods would have produced.
Therefore, data appears in storage as if it had been manipulated using
an 0S access method. For example, block descrirtor words (BDW¥), buffer
pool management, and variable records are maintained in storage as if an
0S access method had processed the data. The actual writing +to and
reading from the I/0 device is handled by CHMS file management.

The work o¢f the volume table of contents (VTOC) and the data set
control tlock (DSCB) is done by a master file directory (MFD) to
maintain disk contents and a file status table (FST) for each data file.
All disks are formatted in physical blocks of 800 bytes.

CMS continues to maintain the 0S format, within its own format, on
the auxiliary device, for files whose filemode number is 4. That is,
the block and record descriptor words (BD¥ and RDW) are written along
with the data. If a data set consists of blocked records, the data is
written to and read from the I/0 device in physical blocks, rather than
logical records. CMS also simulates the specific methods of
manipulating data sets.

To accomplish this simulation, CMS supports certain essential macros
for the following access methods:

e BDAM (direct)-—identifying a record by a key or by its relative
position within the data set.

e BPAM (partitioned)--seeking a named member within an entire data set.

e BDAM/QSAM (sequential)--accessing a record in a segquence relative to

e VYSAM (direct or sequential)--accessing a record sequentially or
directly by key or address. CMS support of 0S VSAM files is
based on DOS/VS access method services and the virtual storage

access method (VSAM). Therefore, the 0S user is restricted to
those services available under DOS/VS AMS and VSANM.

CMS Method of Operation and Program Organization 2-113

CMS Support for the Virtual Storage
Access Method

CMS simulation of 0S and DOS includes support for the virtual storage
access method (VSAM). The description of this support is in three
parts:

e A description of the access method services program (AMSERV), which
allows ycu to create and update VSAM files.

e A description of support for VSAM functions under CMS/DOS.

» A description of support for VSAM functions fcr the CMS 0S simulation
routines.

The routines that support VSAM reside in three discontiguous shared
segments (DCSSs).

—-- The CKSAMS DCSS, which <contains the DOS/VS 1AMS code to support
AMSERV processing.

—-- The CMSVSAM DCSS, which contains actual DOS/VS VSAM code, and the
CMS/VSAM 0S interface program for processing 0S VSAM regquests.

-- The CMSDOS DCSS, which contains the ccde that supports DOS
requests under CMS.

Note: DMSVSR, which performs completion processing for CMS/VSAM support,
resides in the CMS nucleus.

CREATING THE DOSCB CHAIN

The DLBL command creates a control block called a DOSCB in CHMS free
storage. The ddname specified in this DL3BL command is associated with
the ddname fparameter in the program's ACB.

The DOSCB contains information defining the file for the system. The
information in the DOSCB parallels the information written on the label
information cylinder of a real DOS SYSRES wunit, e.g. the name, and mode
(volume serial number) of the data set, its logical unit specification,
and its data set type (SAM or VSAHN). The ancher for this chain is at
location DOSFIRST in NUCON.

Executing an AMSERYV Function

The CHMS BRMSERV command invokes the module DMSAMS, which is the CMS
interface tc the DOS/VS access method services (BRMS) program. Module
DMSAMS lcads DOS/VS AMS code contained in the CMSAMS DCSS by means cf
the LOADSYS DIAGNOSE 64. The AMS code requires the services of DOS/VS
code that resides in the CMSVYSAM DCSS so that DCSS is also loaded via
LOADSYS DIAGNOSE 64 when the VSAM master catalog is opened. Figure 19
shows the relationship in storage between the interface module DMSANS
and the CMSAMS and CMSVSAM DCSSs.

The following is a general description of the CUMSAMS method of
operation.

2-114 IBM VM/370 System Logic and Program Determination--Volume 2

CMSAMS DCSS

CMS
AMSERV MODULE Q« A-disk
> A0
s EF Ny 1 AMSERS
Nt N
BALR IDCAMS 1 IDCAMS: Of I
' Fi T\N
AMS Root : A NVI LIS
Phase O
—] S

- N

CMSVSAM DCSS

\\\\-__E==__,—»”// B-disk
1% for
SAM Master C24 0S or

DOS

H User
~_

Vsamr ©

Pigure 19. Relationship in Storage between the CMS Interface HModule
DMSAMS and the CMSAMS and CMSVSAM DCSSs

DMSAMS first determines whether +the user 1is in the CHS/DGS
environment. If not, a SET DOS ON (VSAM) command is issued to load the
CMSDOS segment and initialize the CHS/DOS environment. In this case,
DMSAMS must also issue ASSGN commands for the disk modes in the DOSCB
chain created by the O0S user's DLBL commands. An ASSGN is also issued
for SYSCAT, the VSAM master catalog.

DMSAMS then issues the ASSGN command for the SYSIPT and SYSLST files,
assigning them to the user's A-disk. DLBL commands are then issued
associating these units with files on the user's A-disk. Input to the
AMSERY processor is the SYSIPT file, which has the filetype ANSERV.
output from AMSERV processing is placed in the SYSLST file, which has a
filetype of LISTING.

DIAGNOSE 64 (LOADSYS) is then issued to l1oad the CMSAMS DCSS, which
contains the DOS/VS AMS code. A DOS/VS SVC 65 is issued to find the
address of the DOS/VS AMS rocot phase, IDCAMS. When the SYVC returns with
the address of IDCAMS, a branch is made to IDCAMS, giving control to
nlive" DOS/VS routines.

IDCAMS expects parameters tc be passed to it when it receives
control. DMSAMS rasses dummy parameters in the list labeled@ AMSPARMS.

After the rcot phase IDCAMS receives control, the functions in the
file specified by the filename on the AMSERV command are executed.

CMS Method of Operation and Program Organization 2-115

In performing the functions requested
execution of DOS/VS VSAM
CMSVSAM DCSS is locaded when AMS opens the

phases located

in this file, AMS may require
in the CMSVSAM DCSS. The
VSAM cataleqg for processing.

On return from DOS/VS code, DMSAMS purges the CMSAMS DCSS, and issues

CLBL commands for the
these ddnames.

Control is then passed to DMSVSR,
the user program was not in the
entered, the SET DOS OFF command is

DMSVSR, DMSAMS performs minor housekeeping

CMs.

SYSIPT and SYSLST files to clear

which purges the CMSVSAM DCSS.
CMS/DOS environment when
issued by DMSVSR.

the DOSCB's for

if
DMSAMS was
Upon return from
tasks and returns control to

Executing a VSAM Function fora DOS User

Wken a VSAM function, such as an OPEN or
a DOS program, CMS rountes control through
DCSS, thus giving contrel to DOS/VS VSAM
relationships in storage between the user
the CMSVSAM DCSS. The description below
of that control flowu.

CMS/DOS SVC HANDLING

CLOSE macro, is requested from
the CMSDOS DCSS to the CHMSVSaM
phases. Figure 20 shows the
program, the CMSDOS DCSS, and
illustrates the overall logic

There are four CKES/DOS routines that handle VSAM requests: DMSDOS,
DMSBOP, DMSCLS, and DMSXCP. Within DMSDOS, several SVC functions
support VSAM requests. These are described in ™Simulating a DOS
Environment Under CMS.®
DMSDOS VSAM Processing
DMSDOS VSAM processing involves handling of SVC 65 (CDLOAD), which

returns the address of a specified phase to the caller.
the nonshared segment table
because both

both the shared segment table and
CMSDOS and CMSVSAM segments,

DMSDOS searches
for the
Both of

could be in use.

these segment tables contain the name of each phase comprising that
segnent follcwed by the fullword address of that phase within the
segment.

During SVC 65 processing, DMSDOS checks to see if the address of

IKQLAB is being requested. IKQLAB is

the VSAK routine that returns the

label information generated by DLBLs and EXTENT cards in DOS/VS systems.

If this is the case,
later use by DMSXCP.

If VSAM has not been
load the CMSVYSAM DCSS.

When DMSBOP is entered
loaded. 1If VSAM has not been lcaded,

to process ACBs,

2-116

DMSDOS saves the address

lcaded, a DIAGNOSE

it checks to
DIAGNOSE €4 is issued to load the

of IKQLAB in NUCON for

64 (LOADSYS) is issued to

see 1f CMSVSAM is

IBM VM/370 System Logic and Program Determination--Volume 2

DOS VSAM DOS Transient

Program CMSDOS DCSS Area CMSVSAM DCSS

DMSDOS
—J-'- $SBOVSAM L
]

OPEN ACB1 > DMSBOP -]
— ! |KQVOPEN
-———————__[—— $SBCVSAM —_]

CLOSE ACB1 »| DMSCLS
—] $SBACLOS > |KQVCLS

——

B-disk -
for OS YSAM Master Cat:

or DOS
User

N VSAMFILE. -

Figure 20. The Relationships in Storage between the User Program and
the CMSDOS and CMSVSAM DCSSs

CMSVSAM DCSS. DMSBOP then initializes the +transient work area and
issues a DOS OPEN via SVC 2 to bring the VSAM OPEN $$BOVSRM transient
into the DOS transient area.

When VSAM processing completes, control returns to the user progranm
directly.

DMSCLS VSAM Processing

DMSCLS processing is nearly the same as processing for DMSBOP. When
DMSCLS is entered, it checks for an ACB to process. If there is one,
the $$BCVSAM transient work area is initialized and SVC 2 is issued to
FETCH the VSAM CLOSE transient $$BCVSAM into the DOS transient area.
When the VSAM CLOSE routines complete processing, control returns to the
user program, as in the case of OPEN.

DMSXCP VSAM Processing

When DMSXCP processes an EXCP request, it determines if the request is
from IKQLAB (that is, to read the SYSRES label information). If so, the
label information area record is filled in from the appropriate DOSCE.
(DMSXCP determines that the caller is IKQLAB by comparing the address of
the caller with the address stored in NUCON by DMSDOS, as described
above.)

CMS Method of Operation and Program Organization 2-117

Executing a VSAM Function for an OS User

0S user requests for VSAM services are handled bty DOS/VS VSAM code that
resides in the CMSVSAM DCSS. To access this code, 0S VSAM requests are
intercepted by the CMS module DMSVIP, the interface between the 0S VSAM
requests and the CMS/D0OS and DOS/VS VSAM routines.

Because DMSVIP is in the CMSVSAM segment, it is available only when
that segment is loaded. Module DMSVIB, which resides in the CHMS
nucleus, is a boctstrap routine to 1lcad the CHMSVSAM segment and pass
control to DMSVIP.

DHSVIP receives control from VSAM request macros in three ways: via
SVC (e.g. OPEN and CLOSE), via a direct branch using the address of
DMSVIP in the ACB, and via a direct branch to the location of DMSVIP
vhose address is 256 bytes into the CMSCVT (CMSCVT is a CHMS control
klock that simulates the 0S CVT control block).

This last technique is used by the code generated from the 0S VSAM
control block manipnlation macros (GFNCR, SHQWCE, TRSTCB, MODCB) . That
is, the address at 256 into CVT is assumed to be that of a control block
that is at displacement X'12' has the address of the VSAM control block
manipulation routine. To ensure that DMSVIP receives control from these
requests, the address of DMSVIP is stored at 256 bytes into CMSCVT.
Hovever, until the CMSVSAM segment is loaded, the address at CMSCVT+256
is the address of module DMSVIB rather than the address of DMSVIP. The
address of DMSVIP replaces that of DMSVIB when CMSVSAM is loaded. Both
DMSYIB and DMSVIP have pointers to themselves at 12 bytes into
themselves to ensure that this technique works.

Figure 21 shows the relationships in storage between the user
program, the OS simulation and interface routines, and the CMSDOS and
CMSVSAM DCSSs.

0S VSAM CMS Module DOS Transient CMSVSAM User
Program DMSSOP DMSVIP CMSDOS DCSS Area DCss -
DMSDOS SSBOVSAM
: VSAM Master C24

OPEN ACB1 P— DMSSOP19 DOSOPEN : s]
BALR 14,15 : - DMSBOP IKQVOPEN
: SSBCVSAM
CLOSE ACB1 == DMSSOP20 DOSCLOSE ;
BALR 14,15 : —~ DMSCLS : ° IKWVCLS
: SSBACLOS

Figure 21. Relationship in Storage between the User Program, the CS
Simulation and Interface Routines, and the CMSDOS and
CMSVSAM DCSSs

The following description illustrates the overall logic of that
control flow.

2-118 1IBM VM/370 System Logic and Program Determination--Volume 2

DMSVIP Processing

DMSVIP gains control from DMSSOP when an OS S¥C 19, 20 or 23 (CLOSE
TYPE=T) is issued. It also gains control on return from execution of a
VSAM function, as described belcw. DMSVIP performs five main functioms:
e Initializes the CMS/DOS environment for 0S VSAM processing.

e Simulates an 0OS VSAH OPEN macro.

e Simulates an 0S VSAM CLOSE macro.

e Simulates an OS VSAM control block manipulation macro' (GENCB, MODCE,
SHOWCB, or TESTCB).

Processes 0S VSAM I/0 macros.

Initializing the CMS/DOS Environment for OS ¥SAM Processing

DMSVIP gets control when the first VSAM macro is encountered in the user
program. Initialization processing begins at this time. The CMSDCS
DCSS is loaded by issuing the command SET DOS ON (VSAM) . ASSGN commands
are also issued at this time according to the user-issued DLBL's as
indicated in the DOSCB <chain. Once this initialization completes,
DMSVIP processes the ¥SAM request.

After the initialization, DMSVIP first checks to determine which VSAH
function is being requested, OPEN, CLOSE, or a control block
manipulation macro.

Simulate an OS VSAM OPEN

For OPEN processing, the DOSSVC bit in NUCON 1is set on and control
passes to DMSBOP via SVC 2. Once the CMS/DCS rcutines are in control,
execution of the VSAM function is the same as for the DCS VSAM functions
described above.

On return from executing the OPEN routine, the address of another
entry point to DMSVIP, at label DMSVIP2, is placed in the ACB for the
data set Jjust opened, the DOSSVC bit is turned off, and contrel is
passed to DMSSOP, which returns to the user program. DMSVIP2 is the
entry point for code that performs linkage to the VSAHM data management
Phase IKQVSM. This is done after the first OPEN because ‘it is assumed
that, once opened, the user performs I/0 for the phase, e.g., a GET or
PUT operation.

When the 1linkage routine is entered, the DOSSVC bit is set on and
control is given to the VSAM data management routine IKQVSM. On return
from IKQVSM DMSVIP turns off the DOSSVC bit and returns control to the
user program. (Refer to Simulate 0S VSAM I/O Macros in this section.)

For CLOSE processing, the DOSSVC bit is set on and control is passed to
the CMS/DOS routine DMSCLS via SVC 2. As in the case of OPEN, once
control passes to the CMS/DOS routine, executicn of the VSAM function is
the same as for the DOS VSAM functions described above.

CMS Method of Operation and Program Organization 2-119

On return from executing the VSAM CLOSE, the DOSSVC tit is turned off
and control passes to DMSSOP, which returns to the user progras.

Simulate 0S VSAM Control Block Manipulation Macros

LCMSVIP simulates the GENCB, MODCB, SHOWCB, and TESTCB control block
manipulation macros.

GENCB PROCESSING: When a GENCB macro is issued with BLK=ACB or BLK=EXLST
specified, the GENCB PLIST is passed unmodified to IKQGEN for execution.
If GENCB is issued with BLK=RPL and ECB=address specified, the PLIST is
rearranged to exclude the ECB specification, Lecause DOS/VS does not
support ECB [processing. The GENCB PLIST is then passed to IKQGEN for

execution.

MODCB, SHOWCB, AND TESTCB PROCESSING: When MODCR, SHOWCB, or TESTCB is
issued, the O0S ACB, RPL, and EXLST control blocks are reformatted, if
necessary, to conform to DOS/VS formats.

For MODCB and SHOWCB, the requests are passed to TIKQTMS for
processing. When MODCB is issued with EXLST= specified, ensure that the
exit routines return control to entry point DMSVIP3.

For TESTCB, check for any error routines the user may have specified.
If the TESTCB specified RPL= and IO=COMPLETE, a not equal result is
passed to the user. All other TESTCB requests are passed to DOS and the
nevw PSW condition code indicates the results of the test.

If an error return is provided for TESTCB, the address of DESVIP4 is
substituted in the PLIST. This allows DMSVIP to regain control from

VS5AM so that the DOSSY¥C bit can be turned off. The error routine is
then given control after the address is returned to the PLIST.

DMSVIP simulates the 0S GET, PUT, POINT, ENDREC, ERASE, and CHECK I/0
macros.

GET, PUT, POINT, ENDREQ, and ERASE Processing:

First, the 0S request code in register 0 is mapred to a DOS/VS request
code. The RPL or chain of RPLs is rearranged to DOS format (unless that
has already been done).

If there is an ECB address in the 0S RPL, a flag is set in the new
DOS RPL and the ECB address is saved at the end ¢f the RPL.

Asynchronous I/0 processing is simulated by setting active exit
returns inactive in the user EXLST. The exception to this is the JRNAD
exit which need not be set inactive since it is not an error exit.
Setting error exits to be inactive prevents VSAM from taking am error
exit, thus alloving such an exit to be deferred until a CHECK can be
issued for it.

The DOS macro is then issued via a BALR to IKQVSH.

2-120 IBM VM/370 Systea Logic and Program Determination--Volume 2

DOS error codes returped in the RPL FDBK field that do not exist in
0S are mapped to their 0S equivalents. If the user has specified
synchronous processing, this return code is passed unchanged in register
15.

For asynchronous processing, return codes are cleared before return
and any exit routines set inactive are reactivated in the EXLST. Also,
all ECBs are set to WAITING status.

CHECK PROCESSING: For CHECK processing, return codes in the RPL FDEK
field are checked to determine the results of the I/0 operation. If
there is an active exit routine provided for the return code, control is
passed to that routine. Also, all WAITING ECBs are posted with an
equivalent completion code.

If no active exit routine is provided or if the exit routine returas
to VSAM, the return code is placed in register 15 and control is
returned to the instruction following the CHECK.

CMS/VSAM Error Return Processing

Two types of support for error routine processing are provided in
DMSYIP. Entry point DMSVIP3 provides support for user exit routines;
entry point DMSVIP4 provides support for ERET error returms.

USER EXIT ROUTINE PROCESSING: DMSVIP provides support for 0S VSAM I/0
error exits at entry point DHSVIP3. At this entry point the DOSSVC bit
is turned off and the user storage key is restored.

The address of the user routine 1is recovered from VIP's saved exit
list (either the primary exit list in the work area or the overflow exit
list, OEXLSRH).

Control then passes to the appropriate exit routine. If the routine
is one that returns to VSAM, the DOSSYC flag is set ON and VSAM
processing continues.

DMSVIP can save the addresses of up to 128 exit routines during
execution of a user progranm.

ERET ERROR ROUTINE PROCESSING: DMSVIP provides support for O0S VSAM ERET
exit routines used in conjunction with the TESTCB macro. This support
is located at entry point DMSVIP4. At DMSVIPY, the DOSSVC bit is turned
off and the user storage key is restored. The address of the ERET
routine 1is recovered from the work area and control passes to that
routine.

The ERET routine may not return control to VSAN.

COMPLETION PROCESSING FOR OS AND DOS VSAM PROGRANS

When an 0S or DOS VSAM program completes, control is passed to module
DMSVSR, which "cleans up" after VSAM. DMSVSR can be called from three
routines after 0S processing:

e DMSINT, if processing completes without system errors or serious user
errors.

CMS Method of Operation and Program Organization 2-121

e DMSEXT, if the user program is used as part of an EXEC file.

e DMSABN, if there are system errors or the user program abnormally
terminates.

After DOS VSAM processing completes, DMSVSR is called by DMSDOS.

DMSVSR issues an SVC 2 to execute the DOS transient routine $$BACLOS.
$$BACLOS first checks for any OPEN VSAM files. If any are open, SVC 2 is
issued to $$BCLOSE (DMSCLS) to close the files.

If there are no open files or if all ACB's have been closed, $$BACLCS
issues SVC 2 to $$BEOJY4, an entry point in DMSVSR. At $$BEOJ4, a
PURGESYS DIAGNOSE 64 is issued to purge the CMSVSAM DCSS. DMSVSR then
checks to see if an 0S program has completed processing. If this is the
case, the SET DOS OFF command is issued and control returns to the
caller.

OS Simulation by CMS

When in a CMS environment, a Frocessor or a user-written program is
executing and utilizing OS-type functions, O0S is not controlling this
action, CMS is in control. Consequently, it is not 0S code that is in
CMS, but routines to simulate, in terms of CMS, certain O0S functions
essential to the support of 0S language processors and their generated
code. .

These functions are simulated to yield the same results as seen fronm
the processing program, as specified by OS program logic manuals.
However, they are supported only to the extent stated in CHMS
documentation and to the extent necessary to successfully execute GS
language processors. The user should be aware that restrictions to CS
functions as viewed from 0S exist in CHMS.

Certain TSO Service routines are provided to allow the Program
Products to run under CMS. The routines are the Command Scan and Parse
Service Routines and the Terminal I/0 Service Routines. In addition the
user must provide some initialization as documented in TSO TMP Service
Routine initialization. The O0S functions that CMS simulates are shown
in Figure 22.

ISQ Service Routine Support

TSO macros that support the use of the terminal monitor program (TME)
service routines are contained in TSOMAC MACLIB. The macro functions are
as described in the TSO TMP documentation with the exception of PUTLINE,
GETLINE, PUTGET, and TCLEARQ.

Before using the TSO service routines, the calling program performs
the following initialization:

1. Stores the address of the command line as the first word in the
command processor parameter list (CPPL). The TSOGET macro Futs the
address of the CPPL in register 1.

2. 1Initializes CMS storage using the STRINIT macro.

3. Clears the ECT field that ccntains the address of the I/0 work area
(ECTIOWA).

2-122 1IBM VM/370 System Logic and Program Determination--Volume 2

CMS Method of Operation and Program Oorganization

[1
| SvC 0S Macro Simulation | |
| Number Function Routine { Comments |
| |
| 00 XDAP DMSSYT { Reads or writes direct access volumes |
| 01 WAIT DMSSVR | Waits for an I/C completion |
| 02 POST DMSSVN | Posts the I/0 ccapleticn i
| 03 EXIT DMSSLN | Returns from linked phase |
| o4 GETMAIN DMSSMN | Conditionally acgquires user free |
{ | storage i
| 05 FREEMAIN DMSSMN | Releases user—-acquired free storage |
| 06 LINK DMSSLN | Links control tc another lcad phase |
| 07 XCTL DMSSLN i Deletes, then links control to another |
| | load phase |
| 08 LOAD DMSSLN | Reads another 1ltad phase into storage |
i (43°] DELETE DMSSLN { Deletes a loaded phase |
| 10 GETMARIN/ DMSSMN | Manipulates free user storage |
| FREEMAIN { |
| GETPOOL D¥SSHMN | Simulates an SVC10 |
| 11 TIME DMSSVT | Gets the time of day |
| 13 RBEND DMSSAB | Terminates processing]
| 14 SPIE DMSSVT | Processes program interruptioans |
{ 17 RESTORE DMSSVT | Effective NOP }
1 18 BLDL/FIND DMSSVT | Manipulates simulated partitioned data |
| | files |
| 19 OPEN DMSSOP | Activates a data file |
| 20 CLOSE DMSSOP | Deactivates a data file {
| 21 STOW DMSSVT { Manipulates partitioned directories i
i 22 CPENJ DMSSOP | Activates a data file |
{ 23 TCLOSE DMSSQP | Temporarily deactivates a data file |
! 24 " DEVTYPE DMSSVT | Obtains device-type physical |
| | characteristics |
| 25 TRKBAL DMSSYT | Effective NOP |
| 31 FEOV DMSSVT { Set forced EQV error code |
| 35 WTC/HTOR DMSSVT | Communicates with the terminal {
| 40 EXTRACT DMSSYT | Effective NOP |
| 41 IDENTIFY DMSSYT | Adds entry to lcader table {
| 42 ATTACH DMSSVT | BEffective LINK |
| 44 CHAP DMSSVT | Effective NOP {
[46 TTIMER DMSSVT | Accesses or cancels timer |
| u7 STIMER DMSSVT { Sets timer interval and timer exit |
| | rToutine 1
] 48 DEQ DMSSVT | Effective NCP |
| 51 SNAP DMSSVT | Dumps specified storage areas i
| 56 ENQ DMSSVT | Effective NOP 1
57 FREEDBUF DMSSVT	Releases a free storage buffer
60 STAE DMSSVT	allows processing program to decipher
	abend condition
i 62 DETACH DMSSYT	Effective NOP
63 CHRPT DMSSYVT	Effective NOP
64 RDJFCB DMSSVT	Obtains information from FILEDEF
	command
i 68 SYNAD DMSSVT	Handles data set error conditioms
69 BACKSPACE DMSSVT	Backs up to the beginning of the
	previous record
- GET/PUT DMSSQS	Manipulates data records
- READ/WRITE DMSSBS	Manipulates data blocks
- NOTE/POINT DMSSCT	Accesses or changes relative track
l	address {
- CHECK DMSSCT i Tests ECB for ccmpleticn and errors	
93 TGET/TPUT DMSSVN	Terminal processing
94 TCLEARQ DMSSVHN	Clears input queue
96 STAX DMSSVT	Adds or deletes an attention exit
	level
L 3
Figure 22. OS Functions that CMS Simulates

2-123

4. 1Issues the STACK macro to define the terminal as the primary source
of input.

CMS Simulation of 0S Control Block Functions

Most of the simulated supervisory 0S contrcel blocks are contained in the
following two CMS control blocks:

CMSCVT simulates the ccmmunication vector table (CVT). Location 16
contains the address of the CVT control section.

CMSCE allocated from system free storage whenever a FILEDEF command or
an OPEN (SVC 19) is issued for a data set. The CMS control block
consists of the CMS file Control block (FCB) for the data file
management under CMS, and simulation of the Jjob file control
block (JFCB), input/output block (I0B), and data extent block
(DEB). The name of the data set is contained in the FCB, and is
obtained from the FILEDEF argument list, or from a predetermined
file name supplied by the processing problem program.

CMS also utilizes portions of the supplied data control block (DCB) and
the data event control block (DECB). The TSO control blocks utilized
are the command program parameters list (CPPL), user profile table
(UPT), protected step control block (PSCB), and environment contrel
table (ECT).

Operating System Simulation Routines

CMS provides a number of routines to simulate certain operating systenm
functions used by programs such as the Assembler and the FORTRAN and
PL/I compilers. Some of the SVC simulation routines are located in the
disk resident transient module DMSSVT. Whenever one of the SVC routines
in DMSSVT or is invoked, that routine is loaded into the transient area.
The following paragraphs describe how these simulation rontines work.

XDAP-SVC 0: Writes and reads the source code spill file, SYSUT1, during

language compilation for PL/I Optimizer and ANS COBOL Compilers.

HAIT-SVC 1: Causes the active task to wait until one of more event
control blocks (ECBs) have been posted. For each specified ECB that has
been posted one is subtracted from the number of events specified in the
WAIT macro. If the number of events is zero by the time the last ECR is
checked contrel is returned to the user. If the number of events is not
zero after the last ECB is checked and the number of events is not
greater than the number of ECBs, the active task is put into a wait
state until enough ECBs are posted to set the number of events at zero.
When the event count reaches zero the wait bits are turn off in any ECBs
that have not been posted and control is returned to the user. If the
number of events specified is greater than the number of ECBs the Systenm
abnormally terminates with an error message. A1l options of WAIT are
supported.

POST-SVC _2: Causes the specified event control block (ECB) to be set to
indicate the occurrence of an event. This event satisfies the
requirements of a WAIT macro instruction. A1l options of POST are
supported. The bits in the ECB are set as follows:

Bit Setting
0 0
1 1
2-7 Value of specified completion code

2-124 IBM VM/370 System Logic and Program Determination--Yolume 2

EXIT-SVC_3: This SVC is for CMS internal use only. It is used by the
CMS routine DHMSSLN to acquire an SVYC SAVEARER on return from an
executing program that had been given control by LINK (SYC 6), XTICL (SVC
7) or ATTACH (SVC 42).

GETMAIN-SVC 4: Control is passed to the GETMAIN entry point in the
DMSSMN storage resident routine. The mode is determined: vy, vC, EC.
A call is made to GETBLK to obtain the block of storage. Control blocks
of two fullwcrds precede each section of available storage: (1) the
address of the next block, (2) the size of this block. The head of the
pointer string is located at the words MAINSTRT - initial free block,
and MAINLIST - address of first link in chain cf free block pointers.
311 options of GETMAIN are supported.

FREEMAIN-SVC 5: Releases a block of free storage. If the block is part
cf segmented storage, a control block of two fullvwords is placed at the
teginning of the released area. Adjustment is made to include this

tlock in the chain of available areas. All cptions of FREEMAIN are
supported.

LINK-SVC 6: Program transfer is controlled by the nucleus routine,
DMSSLN. The LINK macrc causes program contrcl to be passed to a
designated phase. If the COMPSWT bit within the byte OSSFLAGS 1is onmn,
loading is dcne by calling LOADMOD to bring a CMS MODULE file into
storage. If this flag is off, dynamic loading is initiated by calling
LOAD. A GETMAIN is issued to obtain enough storage so that the loader
(LMSLDR) may Telocate the phase. in storage. A chain of 1link request
blecks is built to record the o0ld SVC PSW, and the location and size of
the phase storage area. If the routine is already in storage,
determined bty scanning the load request chain, no LOAD or LOADMOD is
done. Control is passed directly to the routine. CMS 1ignores the DCB
and HIARCHY options; all other cptions of LINK are supported.

ICTL-SYC 7: XCTL first deletes the current phase from storage.
Processing then continues as for LINK-SVC 6, as previously described.
CMS ignores The DCB and HIARCHY options; all other options of XCTL are

supported.

LOAD-SVC 8: Control is passed to DMSSLN8 located in DMSSLN when a LOAD
macro is issued. If the requested phase 1is not in storage, a LOAD or
LOADMOD is issued to bring it in. Control is then returned to the
caller. CMS ignores the DCB and HIARCHY options; all other options of

LOAD are supported.

CBLETE-SVC_9: Control is passed to DMSSLN9 located in DMSSLN when a
CELETE macro is issued. Upon entry, DELETE checks to see whether the
mcdule specified was loaded using LOADMOD or dynamically loaded by LOAD
or INCLUDE. If it was loaded by LOADMOD control is returned to the
user. If it was dynamically loaded, the responsibility count is
decremented by one and if it reaches zero, the storage is released using
FRFEMAIN, and ccntrol is returned to the user. All ortions of DELETE
are supported. Code 4 is returned in register 15 if the phase is not
found.)

GETMAIN/FREEMAIN-SVC 10: Control is passed to the SVC 10 entry point in
DMSSMN. Storage management is analogous to SVC 4 and 5, respectively.
all options of GETMAIN and FREEMAIN are supported. Subpocl
specificaticns are ignored.

CMS Method of Operation and Program Organization 2-125

GETPOOL: Gets control via an O0S LINK macro to IECQBFGI. IECQBFGI
allocates an area of free storage using GETMAIN, sets up a buffer
control block in the free storage, stores the address of the buffer

control klock in the DCB, and then returns control to the caller.

TIME-SVC 11: This routine (TIME) located in DMNSSVT receives control
when a TIME macro instruction is issued. A call is made (by SIO or
DIAGNOSE) to the RPQ software chromological timer device, X'OFF'. The
real time of day and date are returned to the calling program in a
specified form: decimal (DEC) binary (BIN), or timer units (TU0). Aall

options of TIME except hundredths of a second MIC are supported.

ABEND-SVC_13: This routine (DMSSAB) receives control when either an
ABEND macro or an unsupported 0S/360 SVC is issued. If ar SVC 13 was
issued with the DUMP option and either a SYSUDUMP or SYSABEND ddname had
been defined via a call to DMSFLD (FILEDEF), a SNAP (SVC 51) specifying
PDATA=ALL is issued to dump user storage to the defined file. A check
is made to see if there are any outstanding STAE requests. If not, or
if an unsupported SVC was issued, DMSCWR is called to type a descriptive
error message at the terminal. Next, DMSCHT is called to wait until all
terminal activity has ceased, and then, control is passed to the ABEND
recovery routine. If a STAE macro was issued, a STAE work area is built
and control is passed to the STAE exit routine. After the exit routine
is complete, a test is made to see if a retry routine wvas specified. If
so, control is passed to the retry routine. Otherwise, control passes
to DMSABR unless the task that had the ABEND was a subtask. In that
case, the resume PSW in the link block for the subtask is adjusted to
point to an EXIT instruction (SVC 3). The EXIT frees the subtask, and
the attaching task is redispatched.

SPIE-SVC _14: This routine (SPIE) receives ccntrol when a SPIE macro
instruction is issued. When it gets control, SPIE inserts the new
program interruption control area (PICA) address into the program
interruption element (PIE). The program interruption element resides in
the program interruption handler (DMSITP). It then returns the address
of the o0ld PICA to the calling program, sets the program mask in the
calling program's PSW, and returns to the calling program. All options
of SPIE are sufpported.

RESTORE-SVC_17: RESTORE is a NOP located in DMSSVT.

BLDL/FIND (Type D} -SVC_18: SVC to entry points in DMSSOP. If an 0S disk
is specified, DMSSVT branches and links to DMSROS. See BLDL and FIND
under description of BPAM routines in DMSSVT.

STOW-SVC_21: See STOW under description of BPAM routines in DMSSVT.
OPEN/OPENJ-SVC_19/22: OPEN simulates the data management function of
Opening one or more files. It is a nucleus routine and receives control
from DMSITS when an executing program issues an OPEN macro instruction.
The OPEK macro causes an SVC to DMSSOP. DMSSOP simulates the OPEN
macro. The DISP and RDBACK options are ignored by CMS; all other
options of OPEN and OPENJ are supported.

CLOSE/TCLOSE-SVC_20/23: CLOSE and TCLOSE are simulated in +the nucleus
routine DMSSOP. It receives control whenever a CLOSE or TCLOSE macro
instruction is issued. The CLOSE macro causes an SVC tc DMSSOP. DMSSCP
simulates the CLOSE macro. CMS ignores the DISP option; all other
options of CLOSE and TCLOSE are supported.

DEVTYPE-SVC 24: This routine (DEVTYPE), located in DMSSVT, receives
control when a DEVTYPE macro is issued. Ufpon entry, DEVIYPE moves
Device Characteristic Information for the requested data set into a user
specified area, and then returns control +to the user. All options of
DEVTYPE are supported, except RPS, which is ignored.

2-126 IBM VM/370 System Logic and Program Determination--Volume 2

WTO/HTOR-SVC 35: This routine (WTO), located in DMSSVT, receives
control when either a §TO or a WTOR macro imstruction is issued. For a
WTO, it constructs a calling sequence to the DHSCWR function program to
type the message at the terminal. (The address of the message and its
length are provided in the parameter 1list that results from the
expansion of the WTO macro instruction.) It then <calls the DMSCRT
function prcgram to wait until all terminal I/C activity has ceased.
Next, it calls the DMSCWR function program to type the message at the
terminal and returns to the calling progran. A1l options of WTO and
ATOR are supported except those concerned with multiple console support.

Fer a WTOR macro instruction, this routine prcceeds as described for
WTO. However, after it has typed the message at the terminal it calls
the DMSCRD function program to read the user's reply from the terminal.
When the user replies with a message, it moves the message to the buffer
specified in the WTOR parameter list, sets the completion bit in the
ECB, and returans to the calling program.

EXTRACT-SVC _40: This routine (EXTRACT), located in DMSSVT receives
control when an EXTRACT macro is issued. Upon entry, EXTRACT clears the
user provided answer area and returas control to the user with a return
code of 4 in Tegister 15.

IDENTIFY-SVC_41: Located in DMSSVT, this routine creates a new load
request block with the requested name and address if both are valid. The
new entry is chained from the existing load reguest chain. The nev name
may be used in a LINK or ATTACH macro.

ATTACH-SVC 42: Located in DMSSLN, ATTACH operates like a LINK (SVC 6),
Wwith additional capabilities. The user is allcwed to specify an exit
address to te taken upon return from the attached phase; also, an ECB is
posted when the attached phase has completed; and a STAI routine can be
specified in case the attached phase abends. The DCB, LPMOD, DPHMOD,
HIARCHY, GSPV, GSPL, SHSPV, SHSPL, SZERO, PURGE, ASYNCH, and TASKLIB
options are ignored; all other options of ATTACH are supported. Because
CMS is not a multitasking operating system, a phase requested by the
ATTACH macro must return to CHS.

CHAP-SVC 44: CHAP is a NOP located in DMSSVT.

TTIMER-SVC 46: Checks to ensure that the value in the timer (hex
location 50) was set by an STIMER macro. If it was, the value is
converted to an unsigned 32 bit binary number specifying 26 microsecond
units and is returned in register 0. If the timer was not set by an
STIMER macrc a zero is returned in register 0, after setting register 0,
the CANCEL option is checked. If it is nct specified, control is
returned to the user. If it is specified, the timer value and exit
routine set by the STIMER macro are cancelled and control is returned to
the user. All ortions of TTIMER are supported.

STIMER-SVC 47: Checks to see if the WAIT option is specified. If sc,
control is returned to the user. If not, the specified timer interval
is converted to 13 wmicrosecond units and stored in the timer (hex
location 50). If a timer completion exit routine is specified, it is
scheduled tc be given control after completion of the specified time
interval. If not, no indication of the completicn of the time interval
is scheduled. After checking and handling any specified exit routine
address, control 1is returned to the user. A1l options of STIMER are
supported. The TASK optiocn is treated as though the REAL option had
teen specified.

CMS Method of Operation and Program Organization 2-1217

DEQ-SVC_48: DEQ is a NOP located in DMSSVT.

SNAP-SVC _51: Control is passed to SNAP in DMSSVT when a SNAP macro is
issued. SNAP fills in a PLIST with a beginning and ending address and
calls DMPEXEC. DMPEXEC dumps the specified storage along with the
registers and lov storage to the printer. <Control is then returned to
SNAP and SNAP checks to see if any more addresses are specified. It
continues calling DMPEXEC until all the specified addresses have been
dumped to the printer. Control is then returned to the user. Except
for SDATA, PDATA, and DCB, all options of the SNAP macro are processed
normally. SDATA and PDATA are ignored. Processing for the DCB option
is as follows: The DCB address specified with SNAP is used to verify
that the file associated with the DCB is open. If it is not open,
control returns to the caller with a return code of 4. If the file is
open, the FCB associated with the file is checked for a device type of
DUMMY. 1If the device type is DUMMY, control returns to the caller with
a return code of 0 and storage is not dumped.

ENQ-SVC _56: ENQ is a NOP located in DMSSVT.
FREEDBUF-SVC 57: This routine (FREEDBUF) located in DMSSVT receives
control when a TREEDBUF macio is issued. Upon entry, FREEDBUF sets up
the correct DSECT registers and calls the FREELBUF routine in DMSSBD.
This routine returns the dynamically obtained buffer (BDAM) specified in
the DECB to the DCB buffer control block chain. Control is then
returned to the DMSSVT routine which returns control tc the user. All
the options of FREEDBUF are supported.

STAE-SYC_60: This routine (STAE) located in DMSSVT receives control
when a STAE macro is issued. Upon entry, STAE creates, overlays or
cancels a STAE control block (SCB) as requested. Control is then
returned to the user with one of the following return codes in register

15;:

Code Meaning

6o An SCB is successfully created, overlaid or cancelled.

08 The user is attempting to cancel or overlay a nonexistent
SCB.

Format of SCB

0(0) ¢ .
|0 or pointer to next SCB
CYCI
lexit address
8(8) ¢
|parameter list address
12(C) :

L 11

DETACH-SVC_62: DETACH is a NOP located in DMSSVT.

CHEKPT-SVC 63: CHKPT is a NOP located in DMSSVT.

RDJFCB-SVC_64: This routine (RDJFCB) receives control when a RDJFCB
macro instruction is issued. When it gets control, RDJFCB obtains the
address of the JFCB from the DCBEXLST field in the DCB and sets the JFCB
to zero. It then reads the simulated JFCB 1located in CMSCB that was
produced by issuing a FILEDEF into the closed area. BRDJFCB calls the
STATE function program to determine if the associated file exists. If
it does, RDJFCB returns to the calling program. If the file does not
exist, RDJFCB sets a switch in the DCB to indicate this and then returns
to the calling program. RDJFCB is located in DMSSVT. All the options
of RDJFCB are supported.

2-128 1IBM VM/370 System Logic and Program Determination--Volume 2

Note: The switch set by the RDIJFCB is tested by the FORTRAN object-time
direct—-access handler (DIOCS) to determine whether or not a referenced
disk file exists. If it does not, DIOCS initializes the direct access
file.

SYNAD-SYC 68: Located in DMSSVT, SYNAD attempts to simulate the
functions SYNADAF and SYNADRLS. SYNADAF expansion includes an SVC 68
and a high-order byte in register 15 denoting an access method. SYNAD
Frepares an error message line, swap save areas and register 13
pointers. The message buffer is 120 bytes: bytes 1-50, 84-119 blank;
bytes 51-120, 120S IRPUT/OUTPUT ERROR nnn ON FILE: "dspname™; where
nnn is the CMS RDBUF/WRBUF error code. All the options of SYNAD are

supported.

SYNADRLS expansion includes SVC 68 and a high order byte of X'FF' in
register 15. The save area is returned, and the message buffer is
returned to free storage.

BACKSPACE-SVC_69: Also in DMSSVT. For a tape, a BSR command is issued
to the tape. For a direct access data set, the CMS write and read
pointers are decremented by one. Control is passed to BACKSPACE in
DMSSVT when a BACKSPACE macro is issued. BACKSPACE decrements the read
write pointer by cne and returns control to the user. No physical tafre
or disk adjustments are made until the next READ or WRITE macro is
issued. All the options of BACKSPACE are supported.

TGET/TPUT-SVC 93: Located in DMSSVN, this routine receives control when
a TGET or TPUT macro is issued. It is provided to support TSO service
routines needed by program products. TGET reads a terminal line; TBUT
writes a terminal line. The return code is =zero if the operation wvas
successful and a four if an error was encountered.

TCLEARQ-SVC_94: TCLEARQ is located in DMSSVYN and causes the terminal
input queue to be cleared via a call to DESBUF. At completion a return
is made to the user.

STAX-SVC_96: Located in DMSSVT, STAX gets and chains a CHMSTAXE control
tlock for each STAX SVC issued with an exit routine address specified.
The chain is anchored by TAXEADDR in DMSNUC. If no exit address is
specified the most recently added CMSTAXE is cleared from the chain. If
an error occurs during STAX SYC processing, a return code of eight is
placed in register 15. The only option of STAX which may be specified is
EXIT ADDRESS.

GET/PUT: See the DMSSQS prolog for description.

READ/WRITE: OS READ and WRITE macros branch and link tc DMSSBS. DHMSSES
branches and 1links to DMSSEB and, if the disks is an 0S disk, DMSSEB
branches and link to DMSROS. See DMSSBS for description.

NOTE/POINT/FIND (type C) : 0S NOTE, POINT, and FIND (type <) macros
branch and link to entry points in DMSSCT. 1If the disk is an 0S disk,
LMSSCT branches and links tc DMSROS. See DMSSCT for descriptioms.

CHECK: See the DMSSCT prolog for description.

CMS Method of Operation and Program Organization 2-129

Notes on using the 0S simulation routines:

e CMS files are physically blocked in 800-byte blocks, and logically
blocked according to a logical record length. If the filemode of the
file is not 4, the logical record length is equal to the DCBLRECL and
the file must always be referenced with the same DCBLRECL, whether or
not the file is blocked. If the filemode of the file is 4, the
logical record 1length is equal to the DCBBLKSI and the file must
always be referenced with the same DCBBLKSI.

e When writing CMS files vith a filemode number other than four, the CS
simulation routines deblock the output and write it on a disk in
unblocked records. The simulation routines delete each 4-byte block
descriptor word (BDW) and each 4-byte record descriptor word (RDW) of
variable length records. This makes the OS-created files compatible
with CMS-created files and CMS utilities. When CHMS reads a CMS file
with a filemode nunmker other than four, CMS blocks the record input
as specifies and restores the BDW and RDW control words of variable
length records.

If the CMS filemode number is four, CMS dces not unblock or delete
BUWs or KRDWs on output. CMS assumes on input that +the file is
blocked as specified and that variable length records contain block
descriptor words and record descriptor words.

e To set the READ/WRITE pointers for a file at the end of the file, a
FILEDEF ccmmand must be issued for the file specifying the MCD
option.

e 1A file is erased and a nevw one created if the file is opened and all
the following conditions exist:

—— The QUTPUT or OUTIN option of OPEN is specified.
-- The TYPE option o¢f OPEN is not J.

-- The dataset organization option of the DCE is not direct access or
partiticned.

|
|

A FILEDEF command has not been issued for data set specifying the
MOD option.

e The results are unpredictable if two DCBs read and write to the same
data set at the same time.

Command Flow of Commands Involving OS Access

ACCESS COMMAND FLOW: The module DMSACC gets control first when you
invoke the ACCESS command. DMSACC verifies parameter list validity and
sets the necessary internal flags for later use. If the disk you access
specifies a target mode of another disk currently accessed, DMSACC calls
DMSALU to clear all pertinent information in the 0ld active disk table.
DMSACC then calls DMSACF to bring in the user file directory of the
disk. As sccn as DMSACF gets conmtrol, DMSACF calls DMSACM tc read in
the master file directory of the disk. Once DMSACM reads the label cf
the disk, and determines that it is an 0S disk, DMSACM calls DMSRGS
(ROSACC) to complete the access of the 0S disk. Upon returning from
DMSROS, DMSACM returns immediately to DMSACF, bypassing the master file
directory logic for CMS disks. DMSACF then checks to determine if the
accessed disk is an 0S disk. If it is an 0S disk, DHSACF returns
immediately to DMSACC, bypassing all the user file directory logic for
0S disks. DMSACC checks +to determine if the accessed disk is an CS

2-130 1BM VM/370 System Logic and Program Determination--Volume 2

disk; if it is, another check determines if the accessed disk rerlaces
another disk to issue an information message tc that effect. Another
check determines if you specified any options or fileid and, if you did,
a warning message appears on the terminal. Control now returns to the
calling rcutine.

FILEDEF COMMAND FLOW: DMSFLD gets control first when you issue a CHS
FILEDEF command. DMSFLD adds, changes, or deletes a FILEDEF control
block (CKSCB) and returns control to the calling routine.

LISTDS COMMAND FLOW: The module DMSLDS gets control first when you
invoke the LISTDS command. DMSLDS verifies parameter list validity and
calls module DMSLAD to get the active disk talle associated with the
specified mode. DMSLDS reads all format 1 DSCB and if you specified the
PLS option and the data set is partitioned, DMSLDS calls DMSRCS
(ROSFIND) to get the members of the data set. After displaying the DSCB
(or DSCB) on you console, DMSLDS returns to the calling routine.

MOVEFILE COMMAND FLOW: The module DMSMVE gets control first when you
issue a CMS MOVEFILE command. DMSMVE calls DMSFLD to get an input and
output CMSCB and, if the input DMSCB 1is for a disk file, DMSHVE calls
DMSSTT to verify the existence of the input file and get default DCB
parameters in absence of CMSCB DCB parameters. DMSMVE uses 0S OPEN,
FIND, GET, PUT, and CLOSE macros to move data from the input file to the
output flle. After moving the specified data, control returns to the
calling routine.

QUERY COMMAND FLOW: The module DMSQRY gets control first vwhen you invoke
the QUERY command. DMSQRY verifies parameter list validity and calls

MSLAD to get the active disk table associated with the specified mode.
HSQRY displays all the information that you requested on your comsole.
When DMSQRY finishes, control returns to the calling routine.

RELEASE COMMAND FLOW: The module DMSARE gets control first when you
invoke the RELEASE command. DMSARE verifies parameter list validity and
checks to determine if the disk you want to release is accessed. If the
disk you want to release 1is currently active, DMSARE calls DHMSALU to
clear all pertinent information associated with the active disk. DHNSALU
first checks the active disk table for any ex1st1ng CMS tables kept in
free storage. If the disk vyou want to release is an 0S disk, DMSALU
does not find any tables associated with a CHMS disk. If the disk is an
0S disk, DHSALU releases the 0S5 FST blocks (if any) and clears any OS
EST pointers in the 0S file control blocks. DMSALU then clears the
active disk table and returns to DMSARE. DMSARE then clears the device
table address for the specified disk and returns to the calling routine.

STATF COMMAND FLOW: The module DMSSTT gets contrcl first vhen you invoke
the STATE command. DMSSTT verifies the parameter 1list validity and
calls module DMSLAD to get the active disk table associated with the
specified mode. Upon return from DMSLAD, [DMSSTIT calls DMSLFS to find
the file status table (FST) associated with the file you specified.
once DMSLFS finds the associated FST, it checks to determine if the file
resides on an 0S disk. If it does, DMSLFS calls DMSROS (ROSSTT) to read
the extents of the data set. Upon return from DMSROS, DMSLFS returns to
DMSSTT. DMSSTT +then copies the FST (or 0S FST) to the FST copy in
statefst and returns to the calling routine.

0S Access Method Modules—-Logic Description

DMSACC MODULE: Once DMSACC determines that the disk you want to access
is an OS disk, it bypasses the routines that perform LOGIN UFD and LOGIR
ERASE.

CMS Method of Operaticn and Program Organization 2-131

If the disk you want to access replaces an 0S disk, message DMSACC724I
appears at your terminal.

If you specified any options or fileid in the ACCESS command to an GS
disk, a warning message, DMSACC230W, appears to notify you that such
options or fileid were ignored. DMSACC returns to the calling routine
with a warning code of 4.

DMSACF MODULE: DMSACF verifies that the disk you want to access is an CS
disk and, if it is, exits immediately.

DMSACM MODULE: DMSACM saves the disk label and VTOC address in the ADT
Elock if the disk is an 0S disk. DMSACM checks to determine if a
Previous access to an 0S disk lcaded DMSROS. If not, DMSACK calls
DMSSTT to verify that DMSROS text exists. Upon successful return from
STATE, DMSACM loads DMSROS text into the high stcrage area with the same
protect key and calls the 0S access routine (ROSACC) of DMSROS to read
the format 4 DSCB of the disk. Upon successful return fronm DMSROS,
control returns to the calling rcoutine. Any other errors are treated as
general logcn errors.

DMSALU MODULE: TIf the disk is an 0S disk, DMSFRET returns the O0OS FST
blocks (if any) to free storage. DMSALU clears the OS FST pointer in
all active 0S file control blocks, decrements +the DMSROS usage count
and, if the usage count is zero, clears the address of DMSROS in the
nucleus area. DMSALU also calls DMSFRET to returns to free storage the
area which DMSROS occupies.

DMSARE MODULE: DMSARE ensures that the disk you want to relase is an 0S
disk. DMSARE calls DMSALU to release all 0S FST blocks and, if
necessary, to free the area DMSROS occupies. Ufpon return from DMSALU,
DMSARE clears the common CMS and OS active disk table.

LHSFLD MODULE

DSN -- If you specify the parameter DSN as a question mark (?) .,
FILEDEF displays the message DMSFLD220R to regquest you to type in an
05 data set name with the format @1.Q2.QN. Q1, Q2, and CN are the
qualifiers of an 0S data set name. If you srecify the parameter DSK
as Q1.02.0N, FILEDEF assumes that Q1, 02, and QN are the qualifiers
of an O0S data set name, and stores the qualifiers with the format
Q1.02.0N in a free storage block and chains the block to the FCB.

e CONCAT -- If you specify the CONCAT option, FILEDEF assumes that the
specified PILEDEF is unique unless a filedef is outstanding with a
matching ddname, filename, and filetype. This allows you to specify
more than one FILEDEF for a particular ddname. The CONCAT option
also sets the FCBCATML bit in the FCB to allow the CS simulation
routine to know the FCB is for a concatenated MACLIB.

e MEMBER -- If you specify the member option, filedef stores the member
name in FCBMEMBR in the FCB to indicate that the 0S simulation
routine should set the read/write pointer to point to the specified
BPAM file member when OPEN occurs.

DMSLDS MODULE: DMSLDS saves the return register, sets itself with the
nucleus protection key, clears the dsname key, and initializes its
internal flag.

DMSLDS verifies parameter list validity. The data set name must not
exceed 44 characters, and the disk mode (the last parameter before the
options) must be valid. DMSLDS joins the guailifiers with dots (.} to
form valid data set nanmes. If you specify the data set name as a
question mark (?), DMSLDS prompts you to enter the dsname in exactly the
same form as the dsname which aprpears on the disk.

2-132 IBM VM/370 System Logic and Program Determination--Volume 2

DMSLDS calls DMSLAD to find the active disk table block. If you
specify filemcde as an asterisk (*), DMSLAD searches for all ADT blocks.
If you specify the filemode as alphabetic, DMSLAD finds only +the ADT
tlock for the specified filemode.

If you specify the dsname (which is optional), DMSLDS sets the
channel programs to read by key. If you did not specify a dsnanme,
IMSLDS searches the whole VTOC for format 1 DSCES and displays all the
requested information contained in the DSCB on your comsole. If you
specify the format option, the RECFH, LRECL, BLKSI, DSCRG, DATE, LABEL,
FMODER, and data set name appear on you conscle; otherwise, only the
FMODE and data set name aftrear.

If you specify the PDS option, DMSLDS calls the *find* Troutine
(rosfind) in DMSROS to read the member directory and pass back, one at a
time, in the fcbmembr field of CMSCB the name of each member of the data
set. This occurs if the data set is partitioned.

After processing finishes, DMSLDS resets the nucleus key to the same
value as the user key, puts the return code in register 15, and returns
to the calling routine.

DMSLFS MODULE: DMSLFS verifies that the PST being searched for has an CS
disk associated with it. DMSLFS calls the DMSROS state routine (ROSSTT)
to verify that the data set exists and CHS supports the data set
attributes. Upon return from DMSROS, a return ccde of 88 indicates that
the data set was not found, and DMSLDS starts the search again using the
next disk in sequence. Eny other errors, such as a return code 80,
cause DMSLFS to exit immediately. A return code of 0 from DMSRCS
indicates that the data set is on the specified disk. From this point
on, execution occurs common to both CMS and 0S disks.

DMSMVE MODULE: If you specify the PDS option and the input is from a
disk, DMSMVE sets the FCBMVPDS bit and issues an 0S FIND macro before
opening an output DCB to position the input file at the next member.
DMSMVE then stores the input member name in the output CHMSCB for use as
the output filename. After reaching end-of-file on a meamber, the
message DMSMVE225I appears, DMSMVE 'closes the output DCB, and passes
control to find the npext member. After moving all the members to
separate CMS files, movefile displays message DMSMVE226I, closes the
input and output DCBS, and returns control to the calling routine.

DMSROS MODULE:

e ROSACC Routine -- ROSACC gets control from DMSACH after DHSACH
determines that the label of the disk belongs to an 0S disk. The
ROSACC routine reads the format U4 DSCB of the disk to further verify
the validity of the 0S disk. ROSACC updates the ADT to contain the
address of the high extent of the VTOC (if the disk is a DOS disk) cr
the address of the last active format 1 DSCE (if the disk is an CS
disk), and the number of cylinders in the disk. If the disk is a DGCS
disk, ROSACC sets a flag in the ADT. Information messages appear to
notify you that the disk was accessed in read-only mode. If the disk
is already accessed as another disk, another information message
appears to that effect. Finally ROSACC zerces out the ADTFLG1 flag
in the ADT, sets +the ADRFLG2 flag to reflect that an OS5 disk was
accessed, and retnrns control +o the calling routine.

e ROSSTT Routine -- Verifies the existence of an CS data set and
verifies the support of the data set attributes.

Note: Within the ROSSTT description, any reference to FCB or CHSCB
implies a DOSCB if DOS is active.

CMS Method of Operation and Program Organization 2-133

ROSSTT gets contrel from DMSSTT after DMSSTT determines that the
STATE operation is to an 0S disk. The ROSSIT routine searches fer
the correct FCB which a previous FILEDEF associated with the data
set. If the DOS enviromment is active, ROSSTT locates the correct
DOSCB that defines a data set described by a previous DLBL. If
ROSSTT finds an active FST, control passes to ROSSTRET; otherwise,
ROSSTT acquires the dsname blcck, places its address in the FCB, and
moves the dsname in the FCB to the acquired block. ROSSTT acquires
an FST &block, chains it to the FST chain, and fills all general
fields (dsname, disk address, and disk mode). ROSSTIT now reads the
format 1 DSCB for the data set and checks for unsupported options
(BDAM, ISAM, VSAM, and read protect) .

Errors pass control back to the calling routine with an error ccde.
ROSSTT groups together all the extents of the data set (by reading
the format 3 DSCB if necessary) and checks them for validity. ROSSTT
bypasses any user labels that may exist and displays a nmessage to
that effect. Next, ROSSTT moves the DSCR1 BLKSIZE, LRECL, and RECFWM
Parameters to the 0S FST and fasses control to rosstret.
® ROSSTRET Routine -- TIf the disk is not a DOS Aigk, resstred Passes
control rack to the caller. If the specified disk is a DOS disk,
rosstret fills in the 0S FST BLKSIZE, LRECL, and RECFM fields that
vere not specified in the DSCB1. If the CMSCB fields are zerc,
rosstret defaults them to BLKSIZE=32760, LRECL=32670, and RECFM=U.
Control then returns to the calling routine.

® ROSRPS Routine -- ROSRPS reads the next reccrd of an 0S data set.
Upon entry to the ROSRPS entry point, ROSRPS calls CHKXTNT and, if
the-current CCHHR is zero, SETXTNT to ensure the CCHHR and extent
boundaries are correctly set. ROSRPS then calls DISKIO and, if
necessary, CHKSENSE and GETALT to read the next record. If no errors
exist or an unrecoverable error occurred, control returns to the user
with either a zero (I/0 OK) or an 80 (I/0 erxor) in register 15. If
an unrecoverable error occurs, ROSRPS updates the CCWS and buffer
pointers as necessary and recalls CHKXTNT and DISKIO to read the next
record.

® ROSFIND Routine -- ROSFIND sets the CCHHR to point to a member
specified in FCBMEMBR or, if the FCBMVPDS bit is on, sets the CCHHR
to point to the next member higher than FCBMEMBR and sets a new
member name in FCBMEMBR.

Upon entry at the ROSFND entry point, ROSFND sets up a CCW to search
for a higher member name if the FCBMVPDS Lit is on, or amn equal
member npame if the FCBMVPDS bit is off. It then calls SETXTNT,
DISKIO and, if needed, CHKSENSE and GETALT toc read in the directory
block that contains the member name requested. After reading the
block, it is searched for the requested member nanme. If the member
name is not found, an error code 4 returns to the calling routine.
If an I/0 error occurs while trying to read the ©PDS block, an error
code 8 returns to the calling routine. If the member name is found,
TTRCNVRT is called to convert the relative track address to a CCHH
and pass the address of the member entry to the calling routine.

® ROSNTPTB Routine -- ROSNTPTB gets the current TTR, sets the current
CCHHR to the value of the TTR, and backspaces to the previous record.

Upon entry at the ROSNTPTB entry point, ROSNTPTB checks to determine
if a NOTE, POINT, or BSP operation was requested.

If register 0 is zero, NOTE is assumed. The note routine calls

CHRCNVRT to convert the CCHH to a relative track and returns control
to the calling routine with the TTR in register 0.

2-134 IBM VM/370 System Logic and Program Determination--vVolume 2

If register 0 is positive upen entry into DMSROS, POINT is assumed
and ROSHTPTE loads a TTR from the address in register 0 and calls
TTRCNVRT and SETXTNT to convert the TTR to a CCHHR. Then contrcl
returns to the calling routine.

If register 0 is negative upon entry into DMSROS, BSP (BACKSPACE) is
assumed. The backspace code checks tc determine if the current
position is the beginning of a track. If not, the backspace code
decrements the record number by one and control then returns to thke
calling routine. If the current position is the beginning of a
track, the backspace code calls CHRCNVRT tc get the current CCHA.
The backspace code then calls rdcnt to get the current record number
of the 1last record on the new track, calls setxtnt to set the new
oxtent boundaries, and returans control to the calling roatine.

DMSSCT MODULE:

e NOTE Routine -- Upon entry to note, DMSSCT checks to determine if the
DCB refers to an OS disk. If it does, DMSSCT calls DMSROS (RCSNIPTE)
to get the current TTR. Control then returns to the user.

e DPOINT Routine —- Upon entry to point, DMSSCT checks to determine if
the DCB refers to an O0S disk. If it does, DMSSCT calls DMNSRCS
(ROSNTPTB) to reset the current TTR, calls CKCONCAT and returns
control to the calling routine.

e CKCONCAT BRoutine -- Upon entry to CKCONCAT, DMSSCT checks to
determine if +the FCB MACLIB CONCAT bit is on. If it is on,
DCBRELAD+3 sets the correct 0S FST pointer in the FCB and returas
control to the calling routine. If the FCR MACLIE CCNCAT bit is off,
control returns to the calling routine.

e FIND (type_C) Routine -- If the DCB refers to an OS disk, DMSSCT

calls DMSROS (ROSNTPTB) to update the TTR and control returns to the
calling routine.

DMSSEB MODULE:

e EOBROUTN Routine -- If the FCB 0S bit is on, control passes to
OSREAD. Otherwise, if no special I/0 routine is specified in
FCBPROC, control passes to EOB2 in DMSSEB.

e OSREAD Routine —- DMSSEB calls DMSROS to perform a read or write and
then contrcl passes to EOBRETRN which, in turn, passes control back
to DMSSBS. DMSSBS rasses control back to the routine calling the
read or write macro operation.

DMSSOP MODULE -- If the MACLIB CONCAT option is on in the CHSCB, OPEN
checks the MACLIB names in the global list and fills in the addresses of
0S FSTS for any MACLIBS on 0S disks. The CMSCB of the first MACLIB in

the glotal list merges and initializes CMSCBS.

If the CMSCB refers to a data set on an 0OS disk, DMSSCE checks to ensure
that the data set is accessible and the DCB dces not specify output,
BDAM, or a key length. If any errors occur, error message DMSSOPO36E
appears and D¥SSOP does not open the DCB. DMSSOP fills them in from the
0S FST for the data set.

CMS Method of Operation and Program Organizaticn 2-135

If the CMSCB fcbmembr field contains a member name (filled in by FILEDEF
with the member option), DMSSOP issues an OS FIND macro to position the
file pointer to the correct member. If an error occurs on the call to
the FIND macro, error message DMSSOP036E appears and DMSSOP does not
open the DCB.

DMSSVT MODULE:

e BSP (tackspace) Routine -- Upon entry, backspace checks for the FCB
0S bit. If it is on, the BSP routine calls DMSROS (ROSNTPTB) to
backspace the TTR and control returns to the calling routine.

e FIND (type_D) Routine -- Upon entry to find, the find routine checks
the FCB 0S bit. If it is on, the PFIND routine takes the 0S FST
address from the CMSCB or, if the CONCAT bit is on, from the global
MACLIB list. The FIND routine then calls LCESROS (ROSFIND) to find
the member name and TTR. DMSROS searches for a matching member name
or, if the FCBMVPDS option is specified, a higher member name. If
the DMOROS return code is O oi 8, vi iIf the FCBCATHL bit is not on,
control returns to the calling routine with the return code from
DMSROS. If the return code is U4 and the FCBCATML bit is on, DMSSVT
checks to determine if all the global MACLIBS were searched. If they
were, control returns to the calling routine with the DMSROS return
code. If they were not, DMSSVT issues the FIND on the next MACLIB in
the global list.

e BLDL Routine--BLDL list = FF LL NAME TTR KZC DATA

If the DCB refers to an 0S disk, the BLDL routine £ills in the TTR,
C-byte and data field from the 0S data set.

DMSQRY MODULE:

e SEARCH Routine -- The search routine ensures that any O0S disk
currently active is included in the search order of all disks
currently accessible.

e DISK Routine -- The disk routine displays the status of any or all CS
disks using the following form:

'MODE (COU) : (NO. CYLS.), TYPE R/O - 0S.!

DMSSTT MODULE -- DMSSTT verifies that the disk being searched is an 0S
disk. DMSSTT calls DMSLFS to get the FST associated with the data set.
Upon return from DMSLFS, DMSSTT checks the return code to ensure that
CHMS supports the data set attributes. R return code of 81 or 82
indicates that CMS does not suppcrt the data set and message DMSSTT229E
occurs to that effect. DMSSTT then clears the FST copy with binary
zeros, and mcves the filename, filetype, filemode, BLKSIZE, LRECL,
RECFM, and flag byte to the FST copy. From this point on, common code
execution occurs for both CMS and 0S disks.

Routines Common to All of DMSROS

® CHRCNVRT Routine —- The CHRNCVRT routine converts a CCHH address to a
relative track address.

2-136 IBM VM/370 System Logic and Program Determination--Volume 2

e CHKSENSE Routine —-- CHKSENSE checks sense bits to determine the
recoverability of a unit check error if one occurs.

e CHKXTNT Routine -—- CHKXTNT checks to determine if the end of split
cylinder or the end of extent occurred, and, if so, updates to the
next split cylinder or extent.

e DISKIO Routine -- DISKIO starts I/0 operation on a CCW string via a
DIAGNOSE X'20'.

e GETALT Rcutine -- GETALT switches reading from alternate track to
prime track, and from prime track to alternate track.

e RDCNT Routine —- RDCNT reads count fields on the track to deteramine
the last record number on the track.

e SETXTNT Routine —- SETXTNT sets OSFSTERD to the value of the end cf
the extent and, if a new extent is specified, sets CCHHR to the value
of the start of the extent.

Simulating a DOS Environment under CMS

CMS/D0S is a functicnal enhancement tc CMS that provides DCS
installations with the interactive capabilities of a VM/370 virtual
machine. CMS/DOS operates as the background DOS partition; the other
four partitions are unnecessary, since the CMS/DOS virtual machine is a
one-user machine.

CMS/DOS provides read access to real DOS data sets, but not write or
update access. Real DOS private and system relccatable, source
statement, and core-image libraries can be read. This read capability is
supported to the extent required to support the CMS/DOS linkage editor,
the DOS/PLI and DOS/VS COBOL compilers, the FETCH routine, and the
RSERV, SSERV, and ESERV commands. No read or write capakility exists fcr
the DOS procedure library, except for copying procedures from the
procedure library (via the PSERV command) or displaying the procedure
library (via the DSERV command).

CMS/DOS dces not suppert the standard label cylinder.

INITIALIZING DOS AND PROCESSING DOS SYSTEM CONTROL COMMANDS

Initialization of the CMS/DOS operating environment requires the setting
of flags and the creation of certain data areas in storage. Once
initialized, these flags and data areas may then be changed by routines
invoked by the system control commands.

Five modules are described in this section:

e DMSSET Activates the CMS/DOS environment control Llocks to be used
during CMS/DOS processing.

e DMSOPT Sets or resets compiler execution-time optioms.
e DMSASN Relates logical units to physical units.
e DMSLLU Lists the assignments of CMS/DOS physical units.

e DMSDLB Associates a DTF with a logical unit for CMS/DOS processing.

CHMS Method of Operation and Program Organization 2-1317

DMSSET--Initializing the CMS/DQCS Operating Envircnment

DMSSET initializes the CMS/DOS operating environment as follows:

e Verifies that the mode, if specified, is for a DOS formatted disk.

e Stores appropriate data in the SYSRES LUB and PUB.

s Locates and 1loads the CMS/DOS discontiguous shared segment. Saves
(in NUCON) the addresses of the +two major CMS/DOS data blocks,
SYSCOM, BGCOM,and +the address of the CMS/DCS disccntiguous shared
segment (CMSDOS).

e Sets the DOSMODE and DOSSVC bits in DOSFLAGS in NUCON.

e Assigns (via ASSGN) the SYSLOG logical wunit as the CHS wvirtual
console.

The CMS/DOS operating environment is entered when the CMS SET DOS CN

.- L . 3 e T A] LI NS P e e s Eskanniai
CURMand 15 1i55Uucu, J.uvuk.Lug Ll @vullc vilovL Le

Lata Areas Prepared for Processing during CMS,/DOS Initialization

Several data areas are prepared for processing during initialization.
The main CMS data area, NUCON, is modified to contain the addresses of
twvo DOS data areas, SYSCOM and BGCOM.

The SYSCOM DSECT is the DOS system communications region. It
consists mainly of address constants, including the addresses of the AB
option table, the PUB ownership table, and the FETCH table. It also
includes such information as the number of partitions (always one for
CMS/DOS) and the length of the PUB table.

The BGCOM DSECT is the partition communication region. It imncludes
such information as the date, the 1location of the end of supervisor
storage, the end address of the last phase loaded, the end address of
the longest phase loaded, bytes used to set the language translator and
supervisor options, and the addresses of many other DOS data areas such
as the LUB, PUB, NICL, FICL, PIB, PIB2TAB, and the PCTAB.

The LUB and PUB tables are also made available during initialization.
The LUB is the logical wunit block table. It acts as an interface
between the user's program and the CMS/DOS physical units. It contains
an entry for each symbolic device available in the systenm.

Each of the symbolic names in the LUB is mapped into an element in
the PUB, the physical unit block table. The PUB table contains an entry
for each channel and device address for all devices physically available
to the system and also contains such information as device type ccde,
CMS disk mode, tape mode setting, and 7-track indicator.

Two bits are set in DOSFLAGS in NUCON, DOSMODE and DOSSVC. DOSMODE
specifies that this virtual machine is running in the CMS/DOS operating
environment. DOSSVC indicates whether 0S or DOS SVCs are operative in
the operating envircnment. If DOSSVC is set, DOS SVCs are used;
otherwise, 0S SVCs are operative.

2-138 IBM VM/370 System Logic and Program Determination--Volume 2

SETTING OR RESETTING SYSTEM ENVIRONMENT QOPTIONS

once the CMS/DOS envirocnment 1is initialized, the flags and control
blocks set during initialization can be modified and manipulated to
perform the functions specified by commands entered at the console.
mhis section describes the modules that set and reset the systenm
environment options. That is, they set those options that control
compiler execution and that control the configuration of 1logical and
Fhysical units in the systen.

LMSOPT--Setting and Resetting Ccmpiler Options

The CMS/DOS OPTION command invokes module DMSOPI, which sets either thke
default opticns for the compiler or the options specified on the command
line. The ncnstandard language translator options switch and the jecb
duration indicator byte are altered. Options are set using two control
words located in the partition communicaticn region (BGCOH). Bits in
bytes JCSW3 or JCSW4 are set, depending on the options specified.

e

Module DMSASN is invoked when the ASSGN command is entered. DMSASN
first scans the command line to ensure that the logical unit being
assigned is valid for the physical unit specified (for example, SYSLCG
must be assigned to either the virtual comnsole or the virtual printer).
once the command 1line is checked, PUB and LUB entries are modified to
reflect the specified assignment.

For the PUB entry, the device type is determined (via DIAG 24) and
the device type code is placed in the PUB. Other modifications are made
to the PUB depending on the specified assignment. The LUB entry is then
mapped to its corresponding PUB.

The function of DMSLLU is to request a 1list cf the physical units
assigned to 1logical units. It performs this function by referencing
information located in the CMS/DOS data blocks, specifically SYSCOH,
1LUB, and PUB. Another data block, the next in class (NICL) table is
also referenced.

The information on the command line is scanned and the appropriate
items are displayed at the user's console. If an option (EXEC or
APPEND) is specified, an EXEC file is created ($LISTIO EXEC A1) to
contain the output. If EXEC is specified, any existing $LISTIO EXEC a1
file is erased and a new one is created. If APPEND 1is specified, the
nevw file is appended to the existing file.

CMS Method of Operatiom and Program Organization 2-139

DMSDLB--Associate a DTF Table Filename with a Logical Unit

DMSDLB is invoked when the CMS/DOS DLBL command is entered. DMSDLB
associates a DTF (Define The File) table filename with a logical unit.
This function is performed by creating a control block called a DOSCE,
which contains information defining a DOS file wused during Icb
execution. DLBL is valid only for sequential or VSAM disk devices.

This information parallels the label information written on a real
LOS SYSRES wunit under DOS/VS. The DOSCB ccontains such information as
the name, tyre, and mode of the referenced dataset, its device type
code, its logical wunit specification, and its dataset type (SAM or
VSAM).

A DOSCB is created for each file specified by the user during a
terminal session. The DOSCBs are chained to each other and are anchored
in NUCON at the field DOSFIRST. The chain remains intact for the entire
session, unless an abend occurs or the user specifically clears an entry
in the the DOSCB chain. 1A given DOSCB is accessed when an OPEN macro is
issued from an executing user program.

The overall logic flow for DMSDLB is as follows:

1. Scans the command line to ensure that any options entered are valid
(that is, anything to the right of the open Farenthesis) .

2. Processes the first operand (ddnanme or *). When ddname is
specified, loop through the DOSCE chain to find a matching ddname.
If none is found, DMSDLB calls DMSFRE to get storage to <create a
new DOSCB for this file. The 0ld copy of the DOSCB is then saved
so that, in case of errors during processing, it can be retrieved
intact. The new copy of the DOSCB contains updates and DOSCB
replaces the 0ld copy if there are no errors.

3. The mode specification is checked to ensure that it is a valid mode
letter; if the file is a CMS file, the mode letter must specify a
CMS disk. If DSN has been specified, the mcde letter must be for a
non-CMS disk.

4. Process each option on the command line appropriately.

5. If EXTENT or MULT is specified, a separate rlock of free storage is
obtained to contain information about the extent, for example, a
block is obtained to contain the DOS data set name.

5. Check for errors. If there are errors, any blocks created during
pProcessing are purged and an error message is issued. If there are
no errors, restore the 0ld block, which has been modified to
reflect current Frocessing, and return control to DHSITS.

PROCESS CMS/DOS OPEN AND CLOSE FUNCTIONS

The CMS/DOS OPEN routines are invoked 1in resronse to LOS OPEN macros.
They operate on DTF (define the file) tables and ACE (access method
control block) tables «created when the DTFxx and ACB macros are issued
from an executing user program. These tables contain information such as
the LOG unit specification for the file, the DTF type of the file, the
device code for the file, and sc¢ forth. The informaticn in the tables
varies depending upon the type of DTF specified (that is, the table
generated by a unit record DTF macro is slightly different from the
takle generated by a DTF disk macro).

2-140 IBM VM/370 System Logic and Program Determination--Volume 2

Five routines are invoked to perform OPEN functions, DMSOPL, DMSOR1,
CMSOR2, DMSOR3, and DMSBOP. DMSCLS performs the CLOSE function.

Opening Files Associated With DTF Tables

Depending on the type of OPEN macro issued from a user program, one of
five CMS/DOS OPEN routines could be invoked. OPENR macros give control
to DMSOR1 and, depending on the DTF type specified, DMSOR2 or DMSOR3 may
Le invoked. These three routines (DMSOR1,DMSOR2, and DMSOR3) request
the relocation of a specified file. DMSOPL is invoked by the DOS/VS
compilers when they need access to a source statement library. These
routines are mainly interface routines to DMSBOP, which perforas the
main function of opening the specified file. Each of the routines calls
DMSBOP.

DMSBOP 1is the CMS/DOS routine that simulates the DOS/VS OPEN
function. The basic function of DMSBOP is the initialization of DTF
tables (that is, setting fields in specified DTFs for use by the DOS/VS
LIOCS routines).

When a DOS problem program is compiling, a list of DTPFs and ACBs is
built. At execution time, this 1list is passed to DMSBOP. The logic
flow of DMSBOP is as follows:

1. Scans the list of DTF and ACB addresses, handling each iteam in the
list in 1line. When the OPEF macro expands, register 1 points to
the name of the $$B transient to receive control ($$BOPEN) and

register 0 points to the list of DTF/ACB addresses to be opened.

2. When an ACB is encountered in the table, control is passed directly
to the VSAM OPER routine, $$BOVSAM. The VSAM routine is
responsible for opening the file and returning control to DMSBOE.

3. VWhen a DTF is encountered in the table, DMSBOP itself handles the
OPEN:

a. For reader/punch files (DTFCD), the CPEN bit in the DTF table
is turned on. .

b. For printer files (DTFPR), if two IOAREAs are specified, the
IOREG is loaded with the address of the afppropriate IOAREA.
Next, the PUB index byte associated with the logical wunit
specified in the DTF is checked +to ensure that a physical
device has been assigned and the PUB device code is then
analyzed. The OPEN bit in the DTF table is then turned on.

€. For comnsole files (DTFCR), no OPEN logic is required.

d. PFor tape files (DTFMT), the PUB device type code must specify
TAPE. If an IOREG is specified (for output tapes only), the
address of the appropriate IOAREA is placed in it. For input
files, there 1is separate processing fcr tapes with standard
latel, nonstandard label, and no label. For output tapes, both
tape data files and work tape files are treated as no label
tapes.

CMS Method of Operation and Program Organization 2-141

e. For disk files (DTFxx), the LUB is verified to ensure that the
logical unit has been assigned. A check is made to ensure that
the DOSCB exists for the DTF filename. For disk output files,
the address of the appropriate IOAREA is placed in IOREG. Feor
disk input files, the existence of the file is verified via a
call to DMSSST. Also, EXTENT information is initialized and
the OPEN bit is posted.

f. DTFDT and DTFCP are separate DTF types that could describe any
of the above devices.

4., After all files in the table have been opened, DMSBOP returns
control to the problem program via SVC 11.

5. If errors are encountered during DMSBOP processing, an error
message is issued and return is made via SVC 6.

Closing Files Associated With DTFs

The CMS/DOS routine that processes CLOSE requests is DMSCLS, whose logic
is analogous to that of DMSBOP, the OPEN routine described above: when
CLOSE expands, register 1 points to $BCLOSE and register 0 points to the
list of DTF/ACB addresses. The same table containing DTFs and ACBs used
to open files is also used to close those files. Each entry in the
table is processed as it occurs, with control passing to a VSAM CLOSE
routine ($$BCVSAM) when an ACB is encountered. The OPEN kit is then
turned off.

PROCESS CNS/DOS EXECUTION-RELATED CONTROL COMMANILS

The CMS/DOS FETCH and DOSLKED commands simulate the operation of the
LOS/VS fetch routines and the DOS/VS Linkage Editor. The three CHMS
modules that perform this simulation are:

e DMSFET--Prcvide an interface to interpret the DOS FETCH command linpe
and execute the phase, if START is specified on the command line.

e DMSFCH--Bring into storage a specified phase from a system or private
core-image library or from a CMS DOSLIB library.

e T[CMSDLER--Link edit the relocatable output of the CMS/DOS language
translators to create executable prograsms.

DMSFET and DMSFCH--Bring a Phase into Storage for Ezecution

The DOS/VS FETCH function is simulated by CMS modules DMSFET and DMSFCH.
The main control block used during a FETCH operation is FCHSECT, which
contains addressing information required for I/0 operations.

The FETCH command 1line invokes module DMSFET. This module first
validates the command line and issues a FILEDEF for the DOSLIB file. It
then issues a FILEDEF for a DOSLIB file. DMSFET then issues a DOS SVC
4, which invokes the module DMSFCH to perform the actual FETCH
operation.

2-142 1IBM VM/370 System Logic and Program Petermination--volume 2

DMSFCH first determines where the phase to be fetched resides. The
search order 1is private core-image library, DOSLIB, system core-image
library. If the ‘phase is not found 4in any of these 1libraries, DMSFCH
assumes that the FETCH is for a phase in a system or private core-image
library. To find a DOSLIB library member, 0S OPEN and FIND macros are
issued (SVC 19 and 18).

When the member is found, OS READ and CHECK macros are issued to read
the first record of the file (the member directory). This record
contains the number of text blocks and the length of the member.

All addressing information is stored in PCHSECT and the text blocks
that the phase are read into stcrage. If the read is from a CHMS disk,
issue the O0S READ and CHECK macros to read the data. If the read is
from a DOS disk, first determine whether +this is tbhe first read for the
DOS discontiguous shared segment (DCSS). If +this is the case, CC¥
information is relocated to ensure that the DCSS code is reentrant. For
all reads for a DOS disk, a CP READ DIAG instruction is issued. When
the entire file is read, it is relocated (if it is relocatable).

If a DOSLIB is open, close it using an 0S SVC 20 and return control
to DMSFET. DMSFET then checks to see whether START is specified and, if
so, an SVC 202 is issued for the CMS START command to exXecute the loaded
file.

When all FETCH processing is complete, control returns to the CHKS
command handler, DMSITS.

Simulate the Functions ¢f the DOS/VS Linkage Editor: DMSDLK

CMS simulation of the DOS/VS Linkage Bditor function directly parallels
the DOS/VS implementation of that function. For detailed information on
the logic of the function, see the publication DOS/VS Linkage Editor
Logic, Order Nc. SY33-8556.

Note that the mecdules comprising the DOS/VS Linkage Editor are
prefixed by the 1letters IJB and are separate CSECTs. ALL of these
CSECTs have counterparts contained within <the cne CMS module, DMSDLK.
They are treated as subroutines within that module, but perform the same
functions as their inderendent DOS/VS counterparts and have heen named
using the same naming conventions as for the DOS/VS CSECTs. For
example, the TIJBESD CSECT in DOS/VS is paralleled by the CMS DMSDLK
subroutine DLKESD.

A brief dscription of the logic follows. The CMS/DOS DOSLKED coammand
invokes the module DMSDLK, which is entered at subtroutine DLKINL.
DLKINL performs initialization and is later overlaid by the text buffer
and the linkage editor tables. DLKINL starts to read from a DOSLNK file
and processes ACTION statements, if there are any.

On encountering the first non-ACTION card (or if there is no DOSLNK
file), the main flow is entered. Depending on the input on the DOSLEK
or the TEXT file, records from either of those files may be read or
records from a relocatable library may be read. The type of card image
read determines the subroutine to which control is given for further
processing.

An ENTRY card indicates the end of the input to the linkage editor.
At this point, a mpap is produced by subroutine DLKMAP. DLKRLD is then
entered to finish the editing of object modules by relocating the
address constants. If the phases are to be relocatable, relocation
information is added to the output on the DOSLIB. Updating of the
DOSLIB library is performed by DLKCAT using the 0S STOW macro.

CMS Method of Operation and Program Organization 2-143

A significant deviation from DOS/VS code is the use of 0S macros, in
some instances, rather than DOS/VS macros. To take advantage of CMS
support of partitioned data sets, the OS OPEN, FIND, READ, CHECK, and
CLOSE macros are issued rather then their DOS/VS counterparts.

SIMULATE DOS SVC FUNCTIONS

A1l svC functions supported for CMS/DOS are handled by the CHMS module
DMSDOS. DMSDOS receives control from DMSITS (the CHS SVC handler) when
that routine intercepts a DOS SVC code and finds that the DOSSVC flag in
DOSFLAGS is set in NUCON.

DMSDOS acquires the specified SVC code from the OLDESW field of the
current SVC save area. Using this code, DMSDOS computes the address of
the routine where the SVC is to be handled.

Many CMS/DOS routines (including DMSDOS) are contained in a
discontiguous shared segment (DCSS). Most SVC cocdes are executed within
DMSDOS, but some are in separate modules external to DMSDOS. If the SVC
code requested is external to DMSDOS, its address is computed using a
table called DCSSTAB; if the cocde requested is executed within DKSDOS,
the table SVCTAB is used to compute the address of the code to handle
the SVC.

The items below show the SVCs supported by CHMS/DCS simulation
routines, the name of the macro that invokes a given SVC code, the CEKS
module that executes the code, and a brief statement describing how the
SVC function is performed.

SVC 0: EXCP -- Handled by module DMSXCP...reads from CMS or DOS/VS
formatted disks. CCWs are converted to appropriate CMS I/0 requests,
for example, RDBUF/WRBUF, CARDRLD/CARDPH. The CCB is posted (indicating
1/0 completicn) using CMS return information. If a non-zero return code
is returned, a CANCEL is performed. I/0 requests to DOS disks are
handled using CP DIAGNOSE instructioas. ~

SYC 1: FETCH -- Handled by DMSFCH...loads a problem program phase into
core and executes it, if execution is requested. For details on how
FETCH vorks, see the section "Bring a Phase into Storage fer Execution:
DMSFET and DMSFCH."

SVC 2: FETCH -- Handled by DMSFCH...loads a $$$$B-Transient phase into
core and executes it, if execution is reguested. For details on how
FETCH works, see the section "Bring a Phase into Storage for Execution:
DMSFET and DMSFCH."

SYC 4: FETCH -- Handled by DMSFCH...loads a problem program phase into
user storage and executes it, if execution is requested. Fcr details on
how FETCH works, see the sectior "Bring a Fhase 1into Storage for
Execution: DMSFET and DMSFCH."

SYC 5: MVCOM -- Handled by DMSDOS...provides the user with a way of
altering bytes 12 through 23 of the partition communication region
(BGCOM). Checks to ensure that the specified field is correct length
and then moves the information to the specified field.

SYC 6: CARCL -- Handled by DMSDOS...cancels a CMS/DOS session.
Processing depends on value in register 15 on entry; if above 256 the
request is from a system program. If below 256, request is from a user
pPrograas. Processing continues with control ©passing to EOJ code,
described below.

2-144 IBM VM/370 System Logic and Program Determination--Volume 2

S¥C 7: WAIT -- Handled by DMSDOS...informs system programs to wait for a
system event to take place befcre processing can continue. WAIT is an
effective NOP for CMS/DOS.

S¥C 8: Handled by DMSDOS...temporarily returns control to a problem
program. The address of the problem to which control is being passed is
contained in register €. This address is stored in the SVC save area
OLDPSW field and control is passed to the CHS SVC handler (DMSITS).

S¥C 9: Handled by DMSDOS...returns control to system program (i.e. a
user program has been given control, as in the case of SVC 8, and must
return contrcl to the system routine, a $$$$B-Transient routine, that
called it).

S¥C 11: Handled by DMSDOS...returns control to a problem program from a
5%-B transient routine. Uses the SVC save area OLDPSW field to return
to the calling program.

S¥C 12: Handled by DMSDOS...resets flags in the linkage control byte of
the Partiticn Communication Region (BGCOM) to zero; also, provides the
user the capability to use a mask to set the value of this same byte.
In both cases, the SVC routine that handles the request performs an AND
operation to accomplish the function.

SYC 14: EOJ -- Handled by DMSDOS...normally terminates execution of a
problem program. Clears control blocks and resets control words.

S¥C 16: Handled by D3¥SDOS...establishes 1linkage with or terminates
linkage to a user's program check routine. Locates the appropriate BC
option table entry. If contents of register 0 is zero, terminates
linkage: stores a zero into the routine address field of the PC option
table. If register 0 is non-zero, the address of the PC routine and the
save area address is passed to the STXIT macro. If a STXIT PC routine
is already active, the complement of the new routine address is placed
in the PC option table; if no STXIT PC routine is active, both the new
routine address and the save area address are flaced in the PC option
table.

SYC 17: Handled by DMSDOS...provides supervisory support for the EXIT
macrc. Locates appropriate PC option table entry and restores user's
registers and PSW. Stores the address of the PC routine in the EC
option table and returns +to the next sequential address in the
interrupted program.

S¥C 26: Handled by DMSDOS...validates address limits. Checks the limits
passed in registers 1 and 2 apd either returns control to the caller or
Writes an error message.

S¥YC 33: COMRG -- Handled by DMSDOS...provides the address of the

partition communication regicen (BGCOM). Returns the address of BGCOM in
register 1.

SYC 34: Handled by DMSDOS...supprorts the GETIME macro. Updates the date

field in the partition communications region (BGCOM).

S¥C 37: Handled by DMSDOS...establishes linkage to or terminates linkage
from a user's abnormal terminaticn routine. Locate the AB table entry.
If register 0 contains zeros, terminates linkage: if the AB routine is
active, stores zeros into the routine address field ¢f the AB option
table. If the AB routine is nct active, stores zeros into both the

routine address field and the save area field of the AB option table.
If register 0 is non-zero, establishes linkage: passes the address of

the AB routine and the save area address to the STXIT AB macro. If
STXIT AB is active, the complement of the AB routine address is stored

CHMS Method of Operation and Program Organization 2-145

in the AB option table. If STXIT AB is not active, both the address of
the new AB routine and the address of the save area are placed in the
opticn table.

SYC 50: Handled by DMSDOS...issues an error message and terminates the
cocmmand. Issued by a LIOCS routine when that routine is requested to
perform a function it could not perform.

SYC 61: GETVIS -- Handled by DMSDOS...used by VSAM to ottain scratch
storage; also, obtains storage for a relocatable VSAM routine. Storage
is obtained from the wuser.free storage area and the address of the

storage is returned in Register 1.

SVC 62: FREEVIS -- Handled by DMSDOS...returns storage obtained by a

GETVIS. Address of the area to be returned is pointed to by Register 1.

SVC 63: U0SE -- Handled by DMSDOS...VSAM uses SVC 63 to énsure that
system resources are updated serially, so that two or more attempts to
modify the same data at the same time do not succeed. A table of
counters (RURTBL) is kept for system resources. These counters are
posted when a request is made for system resources. If a resource is
already in use, a return code of eight is placed imn register 0. If the
resource is available, a zero is returned in Register 0.

SVC 64: RELEASE -- Handled by DMSDOS...VSAM uses SVC 64 to release a

system resource obtained via TUSE SVC. The appropriate counter in RURTEL
is decremented by one each time a resource is released.

SYC 65: CDLOAD -- Handled by DMSDOS...loads a relocatable VSAM phase

into storage unless that phase has already been loaded.

If an anchor table is available, it is searched for the phase. If
the phase is found, its load point, entry point, and length are returned
in registers 0, 1, and 14, respectively, and register 15 contains zeros.

If the phase is not found in the anchor table, DMSFCH is called to
search for it. If the phase is found 1in the discontiguocus shared
segment, return is made to the requestor as above.

If the phase was found, but not loaded, storage is obtained for it
via the GETVIS SVC. DMSFCH is called again to locad the phase intc the
storage just obtained. An anchor table is then built in the user area
(unless one already exists) and return to the caller is then made as
described above.

SYC 66: RUNMODE -- Handled by DMSDOS...determines whether the problem

program is running in real or virtual mode. Register 0 contains zero on
return if the program is running in virtual mode.

SVC 75: SECTVAL -- Handled by DMSDOS...used by VSAM I/0 rtoutines to
ottain a sector number for 3330 or 3340 devices. The appropriate sector
value is calculated from input supplied in registers 1 and O. The

sector number (from 0 tc 127) is returned in register 0.
Certain DOS SVCs are treated as no-ops by CMS/DOS and other DOS/VS
SVCs are not supported. These are listed below.

SYC 95: Handled by DMSDOS...provides supervisory support for the EXIT
macro. The AB option of the EXIT macro provides an exit from the
abnormal task termination routine and continues the task.

2-146 IBM VM/370 System Logic and Program Determination--Volume 2

The linkage to either the PC or AB routine is reestablished, and the
cancel condition is reset by clearing the abnormal end indication in the
partition PIB extension. Control 1is returned to the instruction
following the EXIT AB macro.

SYCS TREATED AS NO-OP BY CMS/DOS

SYC Action
10: Sets timer interval

18: STXIT (IT)

20: Establishes linkage to OC

22: Seizes (interruption enable/disable)

24: Sets timer interval

35: Holds a track

36: PFrees a track

41: Dequeues a resource

42: Engueues a resource

52: 0 seconds returned as remaining timer interval in register 0
67: PFIX, fixes pages in real storage

68: PFREE, frees pages in real storage

71: SETPFA

85: RELPAG

86: FCEPGOUT

87: PAGEIN

to be generated and are treated as a CANCL {SVC 6).

Action

Forces dequeue

Sets switches in BGCOM

Heads queue and executes channel prograa
Returns from user's IT

EXIT (0C)

Loads phase header

Issues HIO

Special HIO

Returns from user's MR

Multiple WAITM support

Waits for a QTAM element

31: Posts a QTAM element

32: Reserved for IBH use

38: Initializes a subtask

39: Terminates a subtask

43: Reserved for IBM use

44: External unit checks record

45: Emulator interface

46: OLTEP in supervisor state

47: Multiple WAITF support

48: TFetches a CRT trans

49: Reserved by IBM

51: Returns phase header

53: Reserved by IBM

S4: Frees real page frames

55: Gets real page frames

56: Gets or frees PUB of POWER device
57: Makes POWER dispatchable

58: Interface between JCL and supervisor
59: Interface between EOJ and supervisor
60: EREP and CRT I/0 areas address
69: REALAD

70: VIRTAD

60 00 ¢o 40 00 00 s 20 as e S0 |

WIRNNNNNDN = - lm
CWVWO~NW-WYWUWwwid

CMS Method of Operation and Program Organization 2-147

712: GETCBUF/FREECBUF
73: SETAPP
74: Fixes pages in real storage for restart
76: Initializes for recording of RMSR I/0 error
77: TRANSCSW
78: Reserved for IBM use
79: Reserved for IBM use
80: Reserved for IBM use
81: Reserved for IBM use
82: Reserved for IBM use
83: Reserved for IBM use
84: Reserved for IBM use
88 and up:
Reserved for IBM use

PROCESS CMS/D0OS SERVICE COMMANDS
DMSSRV--Copies books from a system or private source statement library
to a specified output device.

DMSPRV--Copies DOS procedures from a DOS system procedure library to a
specified cutput device.

DMSRRV--Copies modules from a system or private relocatable library to a
specified output device.

DMSDSV--Lists the directories of DOS private or system libraries.

CMSDSL--Deletes members (phases) of a DOSLIB library; compresses a
DOSLIB library; lists the members (phases) of a DOSLIB library.

ESERV--De-edits, displays or runches, verifies, and updates edit
assembler macros from the source statement library.

TERMINATE PROCESSING THE CMS/D0OS ENVIRONMENT

DMSBAB--Gives control to an abnormal termination routine once linkage to
such a routine has been established via the STXIT AB macro.
DMSITP--Processes program interrupts and SPIE exits.

DMSDMP--Simulates the $$BDUMP and $$BPDUMP routines: issues a CP DUMP
command directing the dump to an offline printer.

2-148 IBM VM/370 System Logic and Program Determination--Volume 2

Performing Miscellaneous CMS Functions

The CMS Batch Facility and error printouts are described below.

CMS BATCH FACILITY

The CMS Batch Facility is a function of CMS. It provides a way of
entering individual user jobs through an active CHMS machine from the
virtual card reader rather than from the console. The batch facility
reissues the IPL command after each job.

The CMS Batch FPacility consists of two modules: DMSBTB, the bootstrap

routine (a nocnrelocatable CMS module file} and DMSBTP, the processor
routine (a relocatable CMS text file that runs free storage).

General Operaticn of DMSBIB

The tootstrap module, DMSBTB, loads the processor routine DMSBTP and the
user exit routines BATEXIT1 and BATEXIT2 (if they -exist) into free
storage.

DMSBTB first ensures that DMSINS (CMS initialization) has set the
BATRUN and BATLOAD flags on in the CMS nucleus constant area indicating
that either an explicit batch initial program load command has been
issued or that the CMSBATCH command has been issued immediately after
initial program load has taken place. If not, error message DMSBTB101E
is typed and the batch conscle returns to a normal CHS interactive
environment. STATE (DMSSTT) is then called to confirm the existence of
the processor file DMSBTP TEXT. If the file does not exist, error
message DMSTBT100E is typed and the batch console returns to the CHMS
interactive environment.

Using the ™state" copy of the file status table (FST) for DHSBTEF,
DMSBTB computes the size of DMSBTP TEXT file by multiplying the logical
record length by the number of logical records (no DS constants). A
free storage request is made for the size of DMSBTP and the address cf
the routine is then stored at ABATPROC in the NUCON area of the CHS
nucleus.

The existence of the user exit routines is determined by STATE. If
they exist, their sizes are included in the request for free storage.

The free storage address is translated into graphic hexadecimal
format and the CMS LOAD command is issued to load the DMSBTP TEXT file
into the reserved free storage area. The user exit routines, BATEXIT1
TEXT and BATEXIT2 TEXT are also loaded at this time. If these files do
not exist, an unresolved external reference error code is returned by
the 1loader, but is 1ignored by DMSBTB because these routines are
optional. If an error (other than unresolved names) occurs, error
message DMSBTB101E is typed and the batch ccnsole returas to the CHMS
interactive environment.

The loader tables are searched for the address of the ABERD entry
point DMSBTPAB in the loaded batch processor. When the entry is found,

CMS Method of Operation and Program Organization 2-149

its address and that of entry DMSBTPLM are stored in ABATABND and the
ABATLIMT respectively, in the NUCON area of the CHMS nucleus. If the
ABEND entry point is not found in the tables, error message DMSBTB101E
is typed and the batch console returns +t0 the CMS interactive
environment.

The BATLOAD flag is set off to show that DMSBTP has been loaded, the
BATNOEX flag is set on to prevent user job execution until DMSBTP
encounters a /JOB card and finally, control is returned to the command
pProcessor DMSINT.

If an error message is issued, DMSERR is called to type the message,

and the BATRUN and BATLOAD flags are set off before control is returned
to CMS. This allows the normal CMS interaction to resume.

Tom ol mem o o =T

The batch processor wodule DHSBTP simulates the tunction of the CHMS
console read module DMSCRD. This is accomplished by issuing reads to
the virtual card reader, formatting the card-image record to resemble a
console record and returning control to CMS to Frocess the command (or
data) request. DMSBTP also performs reads to the conscle stack if the
stack is not empty, checks for and processes the /JOB card, ensuring
that it is the first record in the user job, traps all CP commands to
maintain system integrity and performs job initialization, cleanup, and
job recovery.

Upon receiving control, DMSBTP checks the BATCPEX flag in NUCON. 1If
the flag is set on, control was received from DMSCPF and a branch is
made to the CP trap routine to verify that the command is allowable
under batch. The function of that routine is described 1later. If the
BATCPEX flag is off, control was received frem DMSCRD {console read
module) and DMSBTP checks for finished reads in the real batch console
stack. If the number of finished reads is not zero, control is returned
to DMSCRD to process the real console finished (stacked) reads. If the
number of finished reads is zero, a record is read from the batch
virtual card reader into the CARD buffer via an SVC call to CARDRD
(CMSCIO). The record in the CARD buffer is tyred on the console via the
WRTERM macro. If the BATMOVE flag is set on (MOVEFILE executing from
the console), the records in the file are not tyred on the console.

The record in the reader buffer is scanned to compute its length with
trailing blanks deleted. It is then moved +to the CHKS console read
buffer and the computed 1length is stored in the original DMSCRD
parameter list, whose address is passed by DMSCRD when it ipitially
Passes control to DMSBTP.

If the first user record is not a /JOB card, error message DMSBTP105E
is typed and normal cleanup is performed with the BATTERM flag set on.
This flag prevents another initial program Jload, since it is not needed
at this time. Reads to the card reader are then issued until the next
/JOB card is found.

If the first record is a /JOB card, DMSBTP branches to its /JOB card
Processing routine whick calls DMSSCHN via a PBALR. A check is made fcr
the existence of the userid and account number on the card. If the
fields exist, a CP DIAGNOSE X'4C' is issued to start accounting
recording for that userid and account number. If an error is returned
from CP denoting an invalid userid, or if the userid or account number
fields were amissing on the /JOB card, error message DMSBTP106E is typed
and normal cleanup is performed with the BATTERM flag set on.

2-150 1IBM VM/370 System Logic and Program Determination—-Volume 2

The jobname, if provided on the /JOB card, is saved and a message is
issued via SVC to inform the source userid that the job has started.
The spooling devices are closed and respooled for continuous output, a
CP QUERY FILES command 1is issued for information purposes and the
implied CP function under CMS is disabled and the protection feature set
off via SVC calls to SET (DMSSET). The BATPROF EXEC is executed via an
SV¥C to EXEC. The BATNOEX flag, which is set by DMSBTB toO suppress user
job execution until the /JOB card is detected, is set off. The BATUSEX
flag is set on (for DMSCPF) to signal the start of the actual user job,
and a branch is taken to read the next card from the reader file (user
job) .

After reading the /JOB card, DMSBTP continues reading and checks for
a /% card, a /SET card, or a CP command. If a card is none of these,
DMSBTP passes control back to the command processor DMSINT for
processing of the command (or data).

If a /% card is read and it is the first card of the new job, it is
assume to Le a precautionary measure and thus ignored by DMSBTP which
then reads the next <card. If it is not the first card a check is made
for the BATMOVE flag. If the flag is on, the /* card indicates an
end-of-file condition for the MOVEFILE operation from the console
(reader) and is consequently translated to a null line for the MOVEFILE
comsand.

If the BATMOVE flag is not on, the /* card is and end-of-jocb
indicator and an immediate branch is taken to the end-of-job routine for
cleanup and reloading of CMS batch.

¥hen a CP command is enccutered DMSBTP branches to a routine that
first checks a table of CP commands allowable in batch. If the command
is allowed, a check is made for a reader or other spocl device in the
command line. If the CP command is allowed but would alter the status
of the batch reader or any spocling device or certain disks, or if the
command is not allowed at.all, error message DMSBTP107E is typed, and
the next card is read.

If the CP command is LINK, the device address is stored in a table so
that DMSBTP can detach all user disk devices at the end of the job.

A CP DETACH command is examined for a device address corresponding to
the system disk, the IPL disk, the batch 195 work disk or any spool
device. If the device to be detached is any ¢f these, error message
DMSBTP107E is displayed and the next card is read. Otherwise, DMSBTP
returns controcl to DMSINT (or DMSCPF is the BATCPEX flag is set omn) for
processing cf the command.

When a /SET control card is encountered, the card is checked fcr
valid keywords, valid integer values (less than or egual to the
installation default values), and if an error is detected, error message
DMSBTP108E is typed. An abnormal termination message is also sent to
the source userid and the job is terminated with normal cleanup
rerformed. If the control card values are valid, the appropriate fields
are updated in the user job limit table DMSBTPLM and the next card is
read.

If DMSBTP detects a "not ready" condition at the reader, a message is
typed at the console stating that batch is waiting for reader input.
DMSBTP then issues the WAITD macro to wait for a reader interrupt. When
first detecting the empty reader, DMSBTP calls the CP accounting
routines via a CP diagnose '4C' to charge the wait time to the batch
userid.

CMS Method of Operation and Program Organization 2-151

If a hard error is detected at the reader, DMSBTP sends an
"intervention required" message to the system console and branches to
its abnormal terminal routine and waits for an interruption for the
reader by issuing the WAITD macro.

When a /* card is read (with the BATMOVE flag off) or when the
end-of-file condition occurs at the reader, DMSBTP branches to the
cleanup routipe which sends the source userid a message stating that the
job ended normally or abnormally (if cleaning up after am abnormal
termination) and turns off the BATUSEX flag (for DMSCPF) +to sigpal the
end of the user job. CONWAIT (DMSCWT) is called via SVC to allow any
console I/0 to finish, the spooling devices are closed (including tke
console), and all disks that were made available by issuing the CP LINK
command are returned by issuing the CP DETACH command.

DMSBTP then relinquishes control by issuing the CP IPL command with
the PARM BATCH option which loads a new CMS nucleus and the next job is
started when CMS attempts its first read to the console.

A branch is made to the CMSBTP routine when DMSBTP itself detects an
I/0 error at the rcader. Hovever, the primary purpose of the iovutline is
to receive control not only from DMSABN when there is an abnormal
termination during the user job, but also frcm DMSITE, DMSPIO, and
DMSCIO when a user job exceeds one of the batch job limits (BATXLIM flag
is on). This routine, entry point DMSETPAB, calls the CP DUMP routine
via SVC and then branches to the cleanup routine which reloads CMS Batch
and treat the remainder of the current job as a new job with no /JCB
card. This has the effect of flushing the remainder of the job. This
technique is used because batch nust keep its reader spooled
"continuous." Entry point DMSBTPAB is also used by the CMS commands
that are disabled in CMS batch. In this case (BATDCHS flag set on), an
error message is displayed and control returned to CHMS.

When a CP command is called via an SVC in DMSBTP, the CMS CP module
(DMSCPF) is actually called to issue +the DIAGNOSE instruction to invoke
the CP command. DMSBTP calls DMSCPF by issuing a direct SVC 202 or by
issuing the LINEDIT wmacro with the CPCOMM option that generates an SVC
203.

Several CMS modules check whether CMS batch is running, and, if so,
perform functions associated with batch operation. These are shown in
the following list:

Module Function Performed for CMS Batch

CMSINI Passes batch parameters to DMSINS.

DMSINS Uses batch IPL parameters to reload CMS Batch.

LCMSLDR Loads DMSBTP into free storage.

DMSCRD Passes control to DMSBTP to read froeg the reader rather than
from the consocle.

TCMSITE Accounts for virtual time used by batch job -- ABEND if over
limit.

LMSPIC Accounts for number of lines printed Lty batch job -- ABEND if
over limit.

DMSCIO Acccunts for number of cards punched Ly batch job -- ABEND if
over limit.

DMSABN Passes control to batch ABEND routine in DMSBTP.

LMSERR Passes control to batch ABEND routine instead of entering
disabled wait state.

LMSMVE Turns the BATMOVE flag on and off -- allows batck to treat

moved blanks as data.

2-152 1IBM VM/370 System Logic and Program Determination--Volume 2

DMSSET Disabled if batch running, except during batch initialization.
DMSRIC Disabled if batch running.

DMSCPF Distinguishes between CP command issued by user and by batch.
DMSFLD Disallows reader device specification.
DMSDSK Disk load not allowed in batck.

ERROR PRINTOUTS

¥M/370 error recording records and records passed via the SVC 76 by
virtual machines are accumulated in chronolegical order on the VH/370
error recording cylinders. The following modules are used by CMS CPEREP
to edit and print error records compiled Lty VM/370 as well as
SYS1.LOGREC data sets:

Hodule Function

DMSIFC Checks some of the operands invoked by CPEREP for validity and
passes the operands to IFCEREP1 for further processing.

DMSREA Reads pages from the error recording cylinder and makes the

records available to IFCPEREPI.
IFCEREP1 Selects error records according to supplied CPEREP operands or
: default values, and formats the records for output.

Detailed descriptions of the CPEREP command, the DNSIFC and DMSREA
podules, and EREP (IFCEREP1) are found in the ¥N/370 CLTSEP and Error
Recording Guide and the VM/370 Service Routines Program Logic with
appropriate referrals to 0S/¥S Environmental Recording, Editing, and
Pripting {EREP} Prograa.

CMS Method of Operation and Program Organization 2-153

2-154 1IBM VM/370 System Logic and Program Determination--Vclume 2

CMS Directories

This section contains the following information:
e Module Entry Point Directory
e Module-to-Label Cross Reference

e Label-to-Mcdule Cross Reference

CMS Directories 2-155

2-156 1IBM VM/370 System Logic and Program Determination--Volume 2

Module Entry Point Directory

DMSASD contains no executaltle code. It must be lcaded
with DMSASM and the GENDIRT command must then be issued
to £ill in the auxiliary directory entries. The GENMOD
command must then be issued to create the assemble
module.

L 1 A Rl
| Module | Entry | |
| Name | Points | Function i
[[} 1 1
L L v 1
| DMSABN | DMSABN | Intercepts an abnormal termination (ABEND) and provides |
| | | recovery from the ABEND. Bntered by a DMKABN |
i { | TYPCALL=BALR macro call. |
	DMSABNKX	Entered by a KXCHK macro tc halt execution after HX has
{	been entered after signaling attention.	
	DMSABNGO	Zntered by any routine that sets up ABNPSW and ABNREGS
§ { in the work area beforehand.		
{	DMSABNSY	Entered as the result of a DHSABN TYPCALL=SV¥C macro i
		call.
1	DMSABNRT	Returns entry point from LCEBUG.
{ 1		
DMSACC	ACCESS	Accesses data in the ADT and related information (such
		as AFT's and chain links) in virtual storage.
	i	
DMSACF	READFST	Reads all file status table blocks into storage for a
} {	read/write disk. Reads in file management tables for a	
		read - only disk. For an 0/S disk, contrcl returns to
	{ to the caller after a successful return from DMSACH. {	
1 i		
DNMSACM	READHFD	Reads the ADT, QHSK, QQHSK, and first <chain link into
		virtual storage from the master file directory cn disk.
	l	
DMSALU	RELUFD	For a specified disk, releases all tables kept in free
		storage and clears appropriate information in the
	{ active disk table (ADT).	
		i
DMSAMS	DMSAMS	Provides an interface tc¢ DOS Access Method Utility
	{ programs (IDCAMS). Provided for support of CHMS/VSAM.	
	{	
DMSARD	DMSARD	Provides storage for the ASM3705 assembler auxiliary
		directory. DMSARD contains no executable code. It must
		be loaded with DMSARX and the GENDIRT command must then
		be issued to fill in the auxiliary directory entries.
!		GENMOD must then be issued to create the ASSEMBLE
l	module.	
	1	
{ DMSARE	DMSARE	Releases storage used for tables pertaining to a given
		disk when that disk is no longer needed.
i		
DMSARN	DMSARN	This is the ASM3705 command processor. It provides the
{		interface between user and the 370x Assembler. {
{	ASMHAND	This is the SYSUT2 processing routine called from
	{ DMSSOB and used during the assembly whenever any I/0	
1	activity pertains to the SYSUT2 file.	
l		
DMSARXY	DMSARX	Provide an interface for the ASM3705 command to the
	i 3705 assembler program. 1	
DMSASD	DMSASD	Provides storage for the assembler auxiliary directory.
!		
1		
l	{	
[4 L]

CMS Directories 2-157

Module Entry Point Directory

r M T

| Module | Entry |

| Name | Points | Function

t + } i
| DMSASM | DMSASHM | Processes the ASSEMBLE command. Provides the interface |
| | | between the user and the system assembler.

| | ASMPROC | This 1is the SYSUT1 preccessing routine (called from |
i | | DMSSOB). |
	!	
DMSASN	DMSASN	Associates logical units with a Physical hardware
{	device. {Interface for the ASSGN command used by	
		CMS/DOS and CMS/VSAM.)
!		
DMSAUD	DMSAUD	Reserves space on disk for writing a copy of disk and
		and file management tables on disk and then updates the
		master file directory.
	DMSAUDUP	Closes all CMS files, thereby updating the master file
{		Directory for any disks that had an output file open.
DMSBAB	DMSEAB	Give control to an abnormal termination routine once
1 I linkage to such a routine has been established Yy STXIT i		
		AB macro.
		{
DMSBOP	DMSBOP	Opens CMS/DOS files associated with the following DTF
'	{ (Pefine The File) tables: DTFCH, DTFCD, DTFPR, DTFMT,	
i		DTFDI, DTFCP, DTFSD. Once the files are opened and
		initialized, I/0 operations can be performed using the
(file.	
	{ I	
DMSERD	DMSBRD	Reads one or more successive items from a specified
	(RDBUF)	file.
l }		
DMSBSC	BASIC	Processes the BASIC command. The BASIC command invokes
I { the CALL-0S BASIC language Pprocessor to corfile and		
		execute the specified file of BASIC source code. [
DMSBTB	DMSBTB	This is the CMS batch bootstrap routine. It 1loads the
		batch processor routine (DMSBTP) and user exit routine
		(if they exist) into free storage.
	{ I	
DMSBTP	DMSBTP	Main entry; reads from the virtual card reader each
		time CMS tries to execute a console read.
	DHMSBTPAB	Entry point for abnormal conditions during user job:
{	e Job exectuion ABEND {from DMSABN)	
i		* Job limit exceeded (from DMSITE, DMSCIO, DMSPIOQ) {
		o Disabled CMS command (from the command)
t	DMSBTPLM	Non-executable user Jjob 1limit table referenced by
		DMSITE, DMSPIO, and DMSCIO.
	{	
DMSBWR	DMSBHR	Writes one or more successive items into a srecified
		disk file.
DMSCAT	DMSCAT	Stacks a line of console input that DMSCRD reads later
		when it is called.
DMSCIO	DMSCIOR	Reads one card record.
	DMSCIOP	Punches one card record.
	DMSCIOSI	Punch caller's buffer.
L L 1 i |
2-158 IBM VM/370 System Logic and Program Determination--Volume 2

Module Entry Point Directory

passes control to approp
(for example, OPEN, CLOSE

riate routines for execution

. FETICH, EXCP).

|] T 1
| Module | Entry i |
{ Name | Points | Function i
H t+ + 4
| DMSCIT | DMSCIT | Processes the interrupticns for all CMS terminal I/0 |
! | | operations and starts the next I/O operation wupon |
! { - | completion of the current I/0C operationm. {
{ { DMSCITA | Processes terminal interruptionms. |
{ | DMSCITB | Starts next terminal I/O operation. |
| { DMSCITDB | Frees I/0 buffers from stacks. {
DMSCLS	DMSCLS	Closes CHMS/DOS files associated with the following DTF
		(Define The File) tables: DMTCN, DTFCD, DTFPR, DTFMT,
	{ DTFDI, DTFCP, and DTFSD. For reader, printer, or punch	
i {	files, a CP CLOSE command is issued. For disk files,	
		DMSFNS is called to close the file. For a disk work
		file, DMSERS is <called to erase the file, unless
		DELETFL=NO is specified. i
DMSCMP	COMPARE	Compares the records contained in two disk files.
	1 {	
{ DMSCPF	DMSCPF	Passes a command line tc CP for execution. i
{ DMSCPY	DMSCPY	Processes the COPYFILE command to copy disk files. {
{ DMSCRD	DMSCRD	Reads an input 1line and makes it available to the
i		caller.
	1 {	
DESCWR	DMSCHR i Wwrites an ocutput line to the console.	
i i i)		
DMSCRT	DMSCHT	Causes the calling pregram to wait until all terminal
		I/0 operations have been completed.
	1 i	
DMSDBD	DMSDBD	Enables a user to dump his virtual storage from within
1		an executing program. {
i	i i	
DMSDBG	DMSDBG	Epables the user to debug his program from the terminal.
{ DMSDBGP	Entry point for program interruptioms. i	
	DMSDBG	Entry point for all other interruptioms.
DMSDIO	DMSDIOR	Reads one or more 800-byte records (blocks) froa disk,
{		or reads one 200-byte record (sut-block) from disk. {
	DMSDIOW	Writes one or more 800-byte records (blocks) on disk, i
		or writes one 200-byte record (subblock) on disk.
	! I	
DMSDLB	DMSDLB	Interface for the DOS DLBL command; allows the user to
		specify I/0 devices extents, and certain file
		attributes for use by a program at execution time.
	{ DLBL can also be used to mcdify or delete proviously	
		defined disk file descriptions.
	{	
DMSDLX	DMSDLK	Interface for the DOS wuser comnmand. Link-edit the
		relocatable output of the language processors. Once
l		link-edited, these core image phases are added to the
i		end of the specified DOSLIB.
{	1	
DMRKDMP	DMKDMP	Simulates the DOS/VS $$BDUMP and $$BPDCMP functioms.
		For both functions, a CP DUME command is issued,
		directing the dump to an cffline printer.
		I
DMSDOS	DMSDOS	Provides DOS SVC support. Interprets DOS SVC ccdes and
{ | | |
1 | | |
4 i A I]

CMS Directories

2-159

Module Entry Point Directory

r v i

| Module | Entry |

| Name | Points | Function

1 1 i

r L] L}

| DMSDSK | DMSDSK | Dumps a disk file to cards or loads files from card to

| | | disk.

[| !

| DMSDSL | DMSDSL | Provides capability to delete members (phases) of a

I l | DOSLIB 1library; also, to compress a DOSLIB library;

{ { | also, to list the members (phases) of a DOSLIB library.

| | |

| DMSDSV | DMSDSV | Lists the directories of DOS private or system packs.

(| |

| DMSEDC | DMSEDC | Arranges compound (overstruck) characters into an

i | | ordered form and disregards tab characters as special

1 { | characters.

| | |

| DMSEDF | DMSEDF | Provides the Editor with the proper settings (CASE,

| | | TAB, FORMAT, SERIAL, etc.) by filetype. Contains

| | | nonexecutable code for reference by DMSEDI.

I !]

| DMSEDI | DMSEDI | Modifies the contents of an existing file or creates a

| | | nev file for editing.

| | |

| DMSEDX | DMSEDX | Performs initialization fcr the CMS Editor.

| | |

| DMSERR | DMSERR | Builds a message to be written at the virtual console

| | | by DMSCHR.

| DMSERS | DMSERS | Deletes a file or related group of files fros

| | | read/vrite disks.

{ i |

| DMSEXC | DMSEXC | Bootstrap loader for disk version of EXEC.

| | !

| DMSEXT | DMSEXT | Processes the EXEC command.

| | !

| DMSFCH | LCMSFCH | Bring a specified phase into storage from a system or

| | | private core image library or from a CMS DOSLIB

{ | | library. DMSFCH is invoked via SvC 1, 2, or 4 or via

| i | the FETCH command.

i | i

| DMSFET | DMSFET | Provides an interface for the FETCH command; also,

| | | provides the capability to start execution of a

| | | specified phase.

| 1 |

| DMSFLD | DMSFLD | Interprets 0S JCL DD parameters for use by CHMs.

| I |

| DMSFNC | DMSFNC | Nucleus resident command name table.

| | DMSFNCSY | Standard SVC table.

[| | |
| DMSFNS | DMSFNSA | Closes one or more input or output disk files.

{ | DMSFNSE | Closes a particular file without updating the directory |
(| | or removing it from the active file table. |
| | DMSFNST | Temporarily closes all cutput files for a given disk.

l | | |
DMSFOR	DMSFOR	Physically initializes a disk space for the CHKS data
		management routines. For an existing disk, any
		information on the disk may be destroyed. The label
		may be changed and the number of cylinders allowed may
		be changed.
—— A)]		

2-160 IBM VM/370 Systenm Logic and Program Determination--vVolume 2

Module Entry Point Directory

|)) 1
| Module | Entry | |
| Name | Points | Function |
L 1 N 1
r T T 1
| DMSFRE | DMSFREB | Called as a result of the DMSFREE and DHKSFRET macro |
] | | calls. Allocates or releases a block of storage |
| | | depending upon the code in NUCON location CODE203. |
i | DMSFREES | Called as a result of the SVCFREE macro call. Tke size |
| { | of the block is loaded from the PLIST and a DMSFREE |
| | | macro is executed. TUpon return, the address of the |
] | | allocated block is stored into the PLIST. |
| . | DMSFRETS | Called as a result of the SVCFRET macro call. The size |
| { { and address of the block to be released are lcaded froa |
i { { the PLIST and a DMSFRET macro is executed. |
i | DMSFREEX | Called as a result of a EALR to the address in the |
{ { | NUCON location AFREE. Executes the DMSFREE macro. 1
{ | DMSFRETX | Called as a result of a BALR to the address in the |
i | | NUCON location AFRET. FExecutes the DMSFRET macro. |
| | DMSFRES | Called as a result of executing the DMSFRES macro. |
| | | DMSFRES processes the following service routines: i
| | | CKOFF, INIT1, INIT2, CHECKS, UREC, and CALOC. i
| DMSGIO | DMSGIO | Creates the DIAGNOSE and CCWs for an I/0 operation to a |
[1 | display terminal from a virtual machine. |
i i i 1
| DMSGLB | DMSGLB | Defines the macro libraries to be searched during |
| { | assembler processing. Defines text 1libraries to be |
i | | searched by the 1loader for any unresolved external |
| | | references. |
1 |] |
| DMSGND | DMSGND | Generates auxiliary system status table. i
1 | | |
DMSGRN	DMSGRN	Edits STAGE? output (STAGE2 input), builds 3705
(assembler files, link-edits text files and an EXEC	
i	macro file.	
	!	
DMSHDI	DMSHDI	Sets the CMS interruption handling functions to
	(HNDINT)	transfer control to a given location for an I/0 device
{	other than those normally handled by CHS, or clears	
i	previously initialized I/0 interraption handling.	
i		
DMSHDS	DMSHDS	Initializes the SVCINT SVC interruption handler to
		transfer control to a given location for a specific
t	SVC number (other than 202) or to clear such previous	
i i { handling.		
! {]	
DMSIFC	DMSIFC	Scans and passes all non-special parameters to the
		IFCEREP1 module, initializing values to edit and print
!	records from VM/370's error recording cylinders.	
	DMSIFC76	Immediately reflects SVC76 back to the calling routine.
i	DMSIPC18	BLPL handler for IFCEREP1.
	DMSIPCO	EXCP handler for IFCEREP1.
		1
DMSINA	DMSINA	Handles either user—-defined synonyms or abbreviations
		or system-defined synonyms for command names.
l		
{ DMSINDEX	DMSIKDEX	Index of CMS listings in the microfiche deck.]
{ DMSINI	DMSINIR	Reads a nucleus into main storage. {
	DMSINIW	Writes a nucleus onto a DASD device.
L k] A b

CMS Directories 2-161

Module Entry Point Directory

r T T 1
| Module | Entry | |
| Name | Points | Function |
+ } t |
{ DMSINM | DMSINM i Obtains the time from the CP timer. {
| | (GETCLK) | |
| | (CMSTIMER) | |
| | | |
{ DMSINS | DMSINS | Controls initialization of the CHS nucleus. |
| | | {
| DMSINS | DMSINS | Controls initialization of the CMS nucleus. |
| | | |
| DMSINT | DMSINT | Reads CM5 commands from the terminal anrd executes |
| i | them. Entry is from DMSINS. {
| | DMSINTAB | Entry from DMSABN. |
| | SUBSET | CMS subset entry. |
i | | |
| DMSIOW | DMSIOW, | Places the virtual CPU in the wait state until the |
| | WAIT, | completion of an I/0 operation on one or more devices. |
| | DMSIOWR, | {
! | WATTRTN ! i
| | | |
| DMSITE | DMSITE, | Processes external interruptions. |
| | EXTINT, | |
| | DMSITET, | |
| | TRAP, | |
| | | |
| DMSITI | DMSITI, | This module is entered when an I/0 operation causes the |
| | IOINT, | I/0 new PSW to be loaded. This module handles all I/0 |
| DMSITI | | interruptions, passes control to the interruption pro- |
| | | cessing routine, and returns control to the interrupted |
| | | program. |
l | | i
| DMSITP | DMSITP | Processes program interruptions and processes SPIE |
| | | exits. 1
| | | {
| DMSITS | DMSITS | Avoids CP overhead due to SVC call. |
| | DMSITS1 | Address pointed to by the CMS SVC new PSW. This point |
| | | is entered whenever an SVC interruption occurs. f
i | DMSITSCR | Return point to which a program called by a CKS SVC |
| | | returns when it is finished processing. (
| | DESITSOR | Return point to which a program called by an 0S SVC |
| l | returns when it is finished processing. |
l | DMSITSK | Called by an SVC by the DMSKEY macro. |
{ | DMSITSXS | Called by an SVC from the DMSEXS macro. |
] | DMSITSR | This is the DMSITS recovery and reinitialization |
| | | routine, called by DMSABN. DMSABN is the ABEND recovery |
| | | routine. |
I DMSLAD | DMSLAD, | Finds the active disk table block whose mode matches |
| | ADTLKP | the one supplied by the caller. {
| | DMSLADN, | Finds the first or the next ADT block in the active |
| | ADTNXT, | disk table. |
| | DMSLADW | Pinds the read or write disk according to input |
| | | parameters. |
| | DMSLADAD | Modifies the file status table chain to include an |
{ | | awxiliary directory, or clears the auxiliary directory |
| | | from the chain. |
i 4 i []
2-162 1IBM VM/370 System Logic and Program Determination--Volume 2

Module Entry Point Dir

ectory

Module
Name

Entry
Points

Function

DMSLAF

DMSLBM

DMSLBT

DMSLDR

DMSLIB

DMSLIO

DMSLKD

DMSLLU

DMSILAPF,
ACTLKP
DHESLATNX,
ACTNXT,
DMSLAFFE
ACTFREE

DMSLAFFT
ACTFRET
DMSLBM

DMSLBT,
TXTLIE,

DMSLDRA

DMSLDRB

DMSLDRC

DMSLDRD

DESLDS

DHSLFS,

TYPSRCH

DMSLGTA

DMSLGTB

DMSLIB

DMSLIO

DMSLKD

DMSLLU

Finds the active file table block whose fil
type, and filemode match the one supplied b
Finds the next or first AFT tlock in the
table.

Finds an empty block in the active file tab
ne¥ block from free storage to the active
if necessary, and places a file status entr
into the AFT block.

Removes an AFT block from the active file t
turns it to free storage if necessary.
Generates a macro library, adds macros to
library, and lists the dictionary of an ex
library.

Creates a text library, adds text files +to
text library, «creates a disk file that
control section and entry point names
library.or types, at the terminal, the cont
and entry point names in a text library.

Begins execution of a group of programs
real storage. Definition of all undefined

ename, file-
¥y the caller
active file

le or adds a
file table,
Y (1f given)

able and re-

an existing
isting macro

an existing

lists the
in a text
rol section

locaded into
programs is

-
|
|
1
|
|
|
|
i
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|

established at 1location zero. Entered from the START |
command or internally from DMSLDRB LDT routine if START |

is specified.
Processes TEXT files that may contain th
cards: SLC, ICS, ESp, TXT, REP, RLD, END, L

e fcllowing
DT, LIEBRARY,

and ENTRY. Entered from ODMSLDP when the load function |

is requested.

Does the processing required by various loader routines |

when an invalid card is detected in a text

file.

!

Does the processing required when a fatal I/C error |

is detected in a text file.

Lists information about specified data sets
an 0S disk. Processes the LISTDS command.

Finds a specified 40-byte FST entry wit
blocks for read-only or read/write disks.

Entered from DMSLDRB if not a dynamic load
the TXTLIB blocks on the TXTLIE chain.
Reads TXTLIB directories into a chain of
directory blocks. Entered from DMSLDRB.

Searches TEXT 1libraries for undefined
closes the libraries.

Creates the 1load map c¢n disk and typ
terminal. Performs disk and typewriter
DMSLDR.

Provides an interface between CMS and the
editor.

Lists the assignments of logical units.

residing on

hin the FST

. Prees all

free storage

symbcls and

es it at the
output for

¥vS1 linkage

|
!
{
{
1
|
|
|
{
|
!
|
|
|
|
|
|
|
!
i
{
|
|
|
i

CHMS Directories

2-163

Module Entry Point Directory

L L | N] a
| Module | Entry | |
| Name | Points | Function i
- t t {
| DMSLOA | DMSLOA | Processes the LOAD and INCLUDE commands to invoke the |
| [| relocating loader. |
| | | {
| DMSLSB | DMSLSBA | Hexadecimal to binary conversion routine. |
| | DMSLSBB | Adds a symbol to the string of lccationms waiting for |
| ! | an undefined symbol to be defined. |
| | DMSLBC | Removes the undefined bit from the REFTBL entry and |
! | | replaces the ADCON with the relocated value. |
| | DMSLBD | Processes LDR optiomns. {
i | | |
| DMSLST | DMSLSTA | Processes the LISTFILE command. prints infcrmation |
| | | about the specified files. |
| | | |
| DMSLSY | DMSLSY | Generates a unique character string of the form 2000001 |
| | { for private code symbols. i
| { i |
| bms@bDP | DHSHSP i Types the lcald map asscciated with +the spnecified file | |
| | | on the terminal. |
| | i |
| DMSMOD { DMSMOD | Processes the GENXOD command to create a file that is a |
| | | core image copy; Pprocesses the LOADMOD command tc load |
| | | a file that is in core image form. |
l | | |
| DMSMVE | DMSMVE | Transfers data between tuwo specified 0S ddnames, the |
| | | ddnames may specify any devices or disk files supported |
| | | by the CMS systenm. |
i { | |
| DMSNCP | DMSNCP | Reads a 3705 control program module (Emulator Program I
| | | or Network Control Progran) in €S 1lcad module format |
| | | and writes a page-format core image COPy ©on a vM/370 |
| | i system volume. |
] | | |
| DMSNUC | DMSNUC | Contains CSECTS for nucleus work areas and permanent !
| | | storage.

| | NUCON | Nucleus constant area.

| | SYSREF | Nucleus address table.

f | DEVTAB | Device table.

| | ADTSECT | Active disk table.

| | AFTSECT | Active file table.

| | EXTSECT | External interruption storage.

| | IOSECT | I/0 interruption storage.

| DMSNUC | PGMSECT | Program Interruption .storage.

| | SVCSECT | SVC interruption storage.

| | DIOSECT | Disk I/0 storage.

| | FVS | File system storage.

1 | OPSECT | Parameter lists.

1 { CVTSECT ! Simulated 0OS CVT.

| ! DBGSECT | Debug storage.

| | TSOBLKS | TSO contrcl blocks.

1 | |

{ DMSOLD | | Performs initialization and processing for each loading

| | | operation by processing text files that contain the

| | | following cards: sLc, 1Ics, ESD, TXT, REP, RLD, END,

| i { LDT, LIBRARY, and ENTRY.

| | DMSOLD | Entered from DMSSLN when load requested.

| | DMSLDRC | Entered when an invalid card is detected in a text

i | | file.

| | DMSLDRD | Entered when a fatal error occurs during loading.

| — 1 1

2-164 IBM VM/370 System Logic and Progran Determination--Volume 2

Module Entry Point Directory

subcommand, which renumbers files with filetypes of
VSBASIC and FREEFORT.

T | T 3
| Module | Entry | |
| Name | Points | Function |
]] [l |
r 1 ¥ 1
DMSOPL	DMSOPL	Reads the appropriate system directory records and
		headers and determines if the specified libraries ccn-
	{ tain any active members. Returns the disk address of	
	{ the specified system library and indicates whether or	
		not there are active members to Le accessed on the disk.
l		
{ DMSOPT	DMSOPT { Sets DOS options in the System Communications Region as	
]		specified by the OPTION command.
		I
DMSOR1	DMSOR1	Relocates all DFT (Define The File) Table address
!		constants to executable storage addresses. (Called by
{		$$BOPENR via SVC 2.)
1 {		
{ DMSOR2	DMSOR2	Relocates all DTF (Define The File) Table address
i		constants to executable storage addresses. (Called by
		DMSOR1.)
l l]	
DMSOR3	DMSOR3	Relocates all DTF (Define The TFile) Table address
!	constants to executable storage addresses. (Called by	
		DMSOR2.)
{		
DMSOVR	DMSOVR	Analyzes the SYCTRACE command parameter 1list and
i i ! loads the DMSOVS tracing routine. {		
1		{
DMSOVS	DMSOVS { Provides trace information requested by the SVCTRACE	
		command.
i	1 i	
DMSPIO	DMSPIO	Prints one line.
	DMSPIOCC	Puts CCWs and data into the caller's buffer.
l	DMSPIOSI	Prints the caller's buffer, issues an SI0O to the
1 l	virtual printer, and analyzes the resulting status.	
DMSPNT	DMSPNT	Places the address of a file status table entry in the
		active file table (if necessary), and sets the read
1		Fointer or write pointer for that file to a given item
! ! { number within the file. [
{ {		
DMSPRT	DMSPRT	Prints CMS files.
DMSPRV	DMSPRV	Copies procedures from the DOS/VS system procedure
i	library to a specified output device. : !	
i i i		
DMSPUN	DMSPUN { Punches CMS files to the virtual card punch.	
{ DMSQRY	DMSQRY	Processes the QUERY comasand. Displays at the user's
		terminal, the status of various CMS functions and
		tables.
	!	
DMSRDC	READCARD	Reads cards and assigns the indicated filename.
l		i
DMSREA	DMSREA { Reads error recording cylinder pages into storage for	
		EREP (IFCEREP1) processing. It passes one logical
	i record for each read request.	
DMSRNE	DMSRNE	Provides an interface for the CMS Editor RENUM
1 | i

| ! |

[L L

CMS Directories 2-165

Module Entry Point Directory

| v L

| Module | Entry |

| Nane | Points | Function

1 4 1

r T T

| DMSRNM | DMSRNM | Processes the RENAME command. Changes the fileid of
| | | the specified file.

i | |

| DMSROS | DMSROS | Accesses 0S disks.

| | ROSACC |

(| DMSROS+4 | Verifies the existence of 0S disks.

| | ROSSTT |

| DMSROS | DMSROS+8 | Reads 0S disks.

| | ROSRPS |

| | DMSROS+12| Finds a member in an 0S PDS.

i | ROSPFIND |

| | DMSROS+#16| Performs NOTE, POINT, and BSP functions.

| | ROSNTPTB|

| |

| DMSRRV | DMSRRV | Provides the capability to copy (to an output device)
| (| modules residing on DOS system or private relocatable
|] | libraries.

i i i

| DMSSAB | DMSSAB | Processes 0S ABEND macros.

| | |

| DMSSBD | DMSSBD | Accesses data set records directly by item number. It
| | | converts record identifications given by 0S BDAM macros
| | | into item numbers and uses these item numbers to access
| | | records. ,

i | |

| DMSSBS | | Processes 0S BSAM READ and WRITE macros.

| | DMSSBSRT | Entry for error return from call to DMSSBD.

| | |

| DMSSCN | DMSSCN | Transforms the input line from a series of arguments to
| | | a series of 8-byte parameters.

[;o |

| DMSSCR | DMSSCR | Loads display buffers and issues a macro resulting in a
{ | | CP DIAGNOSE to write to the display terminal.

{ { |

| DMSSCT | DMSSCTNP | Processes O0S POINT, NOTE, CHECK, and FIND (type Q)
| [| macros.

| | DMSSCTCK | Processes 0S CHECK macro.

I | DMSSCTCE | Handles QSAM I/0 errors for DMSSQS and PDS and keys
{ | | errors for DMSSOP.

| i |

| DMSSEB | DMSSEB | Calls device I/0 routines to de I/0 and. sets up ECB
| ! | and IOB return codes.

| | I

| DMSSEG | DMSSEG | Contains a table of VCONS for CMS saved segment
{ I | entries.

| ! |

| DMSSET | DMSSET | Processes the SET command.

| | |

| DMSSLN | DMSSLN | Handles 0S contents management requests issued under
| | | CMs (LINK, LOAD, XCTL, CELETE, ATTACH, EXIT).

{ [|

| DMSSMN | DMSSHMN | Processes 0S FREEMAIN and GETMAIR macros and CMS calls
{ ! | DMSSMNSB and DMSSHKNST.

| | |

| DMSSOP | DMSSQP | Processes 0S OPEN and CLOSE macros.

| l |

| DMSSQS | DMSSQS | Analyzes record formats and sets up the buffers
| | | for GET, PUT, and PUTX requests.

[B 1 L

2-166 IBM VM/370 System Logic and Program Determination--Volume 2

Module Entry Point Directory

one program available for allocation to another.

r L " 1
| Module | Entry {]
| Name | Points | Function |
t } } 1
| DMSSRT | DMSSRT | Arranges records within a file in descending sequential |
1 | | order. |
! ! | |
DMSSRY	DMSSRYV	Provides capability to copy books from a system or
		private source statement library to a specified output
{	device. ,	
L	! i	
DMSSSK	DMSSSK	Sets storage protect key for a specified saved system.
	i	
DMSSTG		Processes CMS calls to DMSSTGST and DMSSTGSB (STRINIT)
i	and storage service routines.	
i "{ DMSSTGSB	STRINIT.	
	DMSSTGST	{
] I DMSSTGCL	0S exit reset routine.	
! { DMSSTGSY	Service routine to change nucleus variatles.	
{	DMSSTGAT	Initializes storage and sets up an anchor table.
DMSSTT	DMSSTT	Locates the file status table entry for a given file
(and, if found, provides the caller with the address of
		the entry.
i { i		
DMSSVN	DMSSVN	Processes the 0S WAIT and POST macros.
DMSSVT	DMSSVT	Processes 0S macros: XLCAP, TIME, SPIE, RESTCRE, BLDL,
		FIND, STOW, DEVIYPE, 1IRKBAL, ¥WTO, WTOR, EXTRACT,
		IDENTIFY, CHAP, TTIMER, STIMER, DEQ, SNAF, ENC,
i {	FREEDBUF, STAE, DETACH, CHKPT, RDJFCB, SYNAD,	
		BACKSPACE, and STAX. {
	I	
DESSYN	SYNONYM	Processes the SYNONYM command. Sets up user-defined
{	command names and abbreviations for CMS commands. !	
		{
DMSTIO	DMSTIO	Reads or writes a tape record or controls tape
		positioning. !
! {		
DMSTMA	DMSTMA	Reads an IEHMOVE unloaded PDS from tape and places it
i i i in a CHS MACLIB.		
i { ! !		
DMSTPD	DMSTPD	Reads a tape consisting c¢f card image members of a PDS
{		and creates CMS disk files for each member of the data
I { i set. The PDS option allows reading unblocked tapes i		
i	produced by the 0S IEEPTPCH wutility or blocked tapes	
		produced by the 0S IEHMOVE utility. The UPDATE option
	{ provides the "./ ADD"™ function to blocked or unblocked	
	{ tapes produced by the IEBUPDTE utility.	
DMSTPE	DMSTPE	Processes the TAPE command to perform certain tarpe
{	{ functions, such as: dump a CMS file, load a CHS file,	
		set tape mode, scan, skip, rewind, run, FSF, FSR, BSF,
{	BSR, ERG, and WTHM. {	
DMSTQQ	DMSTQQ	Allocates a 200-byte first chain 1link (FCL) to a
l		calling program.
{ DMSTQQX	Makes a 200-byte disk area no longer needed by one	
i	program available for allocation to another prograam.	
{	!	
DMSTRK	DMSTRKA	Allocates an 800-byte disk area to a calling prcgranm.]
i	DMKSTRKX	Makes an 800-byte disk area that is no longer needed by
!		
		1
14 1 L J

CMS Directories 2-167

Module Entry Point Directory

r T T

| Module | Entry |

| Name | Points | Function

{ [l 1

e LB T

| DMSTYP | TYPE | Processes the TYPE command. Types all or a specified
] | | part of a given file on the user's console.

| { I

| DMSUPD | DMSUPD | Processes the UPDATE command. Opdates source files
| | | according to specifications in update files. Multiple
| | | updates can be nmade, according to specifications in
| i | control files that designate the update files.

| | |

| DMSVAN | DMSVAN | Contains table of Access Method Services nonshared
| | | (nonreentrant) modules.

| DMSVAS | DMSVAS | Contains a table of Access Method Services shared
| | | (reentrant) modules.

{ | i

| DMSVIB | DMSVIB | Loads the CMS/VSAM saved system and pass control to the
{ 1 | CMS/VSAM interface routine, DMSVIP.

| [|

| DMSVIP | DMSYVIP | Finds the CMS/D0S discontiguous shared segment (DCSS);:
f | | issues all necessary DOS ASSGN statements for ©S user;
| | | maps all 0S VSAM macro requests to DOS specifications;
l | | equivalents, where necessary; traps all transfers of
{ | | control between VSAM and the O0S user and sets the
| | | appropriate operating environment flags.

| | |

| DMSYPD | DMSVPD | Reads DOS, VSAM, and Access Method Services modules
| | | from a DOS PTF tape and writes the modules to the CHNS
| | | user's A-disk.

| | |

| DMSVSR | DMSVSR | Resets any flags or fields set by VSAM processing;
| | | purges the VSAM discontiguous shared segment.

{ | |

| DMSV33 | DMSV33 | Contains a table of VSAM shared (reentrant) modules and
i | | is contained within the CHSVSAM shared system. Used by
| | | CMSVSAM and VSAMGEN to generate the CMSVSAM shared
| | | system, and by CDLOAD to locate the phases within
| { | CMSVSAM. Used for system generation from the DGS/VS
| (| Release 33 restored starter system. Contains no exe-
| | | cutable code.

[| |

| DMSXCP | DHMSXCP | Simulates the DOS EXCP functiomn (DOS SVC 0) in the
| | | CMS/DOS environment. EXCP (Execute Channel Progranm)
| | | requests initiation of an I/0 operation to a specific
I I | logical unit.

| | |

| DMSZAP | DHSZAP | Processes the ZAP command. Provides a facility to
| i | maintain CMS LOADLIB members as written by the CHNS
| | | command LKED.

| | |

| DMSZAT | DMSZAT | Defines 8K-bytes of transient area.

| | |

| DMSZIT | DMSZIT | Defines the end of the CMS nucleus.

| | |

| DMSZNR | DMSZNR | Defines the end of NUCON (DMSNUC).

| ! 1.

| DMSZUS | DMSZUS | Defines the start of the user area.

i L] i

2-168 IBM VM/370 System Logic and Program Determination--Volume 2

3IO9IATJ SHD

S9TI0

691-¢

MODULE

DMSABN

DMSACC

DMSACF

DMSACHM

DMSALU

DMSAMS

EXTERNAL REFERENCES (LABELS AND MCDULES)

ABATABND ABNBIT

ADTFMIN ADTFQQF
AOUTRTBL ASUBFST
BATRUN BATSYSAB
DCSSFLAG DCSSVTLD
DMSLADAD DMSLADN

FVSECT IONTABL
NUHM NUMFINRD
RO R1

R9 SSAVE

ADMSFREB ADTDTA
ADTFROS ADTFRW
ADTSECT ADTUSED
FSTFNAME FSTFTYPE
R10 R11

R9 SSAVE

ADMSFREB ADTADD
ADTFORCE ADTFRO

ADTRES ADTSECT
FSTRP FSTSECT
R1 R10

RSB R9

ADIOSECT ADMSFREB
ADTFRW ADTHBCT
ADTROX ADTSECT
DTADT ERRCODO
LDMSROS LoC

R12 R13
SEEKADR SENSB
ABGCOM ADMSFREB
ADTFSTC ADTFTYP
AFVS BALR
LDMSROS LOC

R13 R14

VCADTLKP VCADTNXT

AAMSSYS ABGCOM
ASYSNAMS ATABEND
DOSFIRST DOSFLAGS
FSTFV FSTIL
PUBPT RELPAGES

ABNERLST
ADTFROS
ASUBSECT
CMNDLINE
DMSABW
DMSSTGSB
IOSECT
OLDPSW
R12
SUBFLAG

ADTFALUF
ADTFSTC
ADT1ST
FVSECT
R12

TEXT

ADTCFST
ADTFROS
AFVS
FSTT
R11
TYPE

ADMSROS
ADTID
ADTUSED
ERROR
LOCCNT
R14
SIGNAL

ADMSROS
ADTID
CDMSROS
NUCON
R15

ADEVTAB
BALR
DOSMODE
FSTM
RESET

ABNPAS13 ABNPSW ABNREGS ABNRR
ADTHBCT ADTHN ADTMFDA ADTMFDN
ASUBSTAT ATIN AUSABRV AUSRAREA

CODE203 CONRDCNT CONRDCOD CONREAD
DMSCAT DMSCITDB DMSCRD DMSCWT
DOSFIRST DOSFLAGS DOSMODE DOSNUM
IPLPSH KXFLAG KXWANT LDMSRCS

OPSECT OPTFLAGS OSADTFST OSFST
R13 R14 R15 R2
SUBSECT TEXT UFDBUSY USERKEY
ADTFDA ADTFDOS ADTFFSTF ADTFFSTV
ADTHBCT ADTLHBA ADTHM ADTMFDN
AFINIS AFVS AKILLEX BALR
IADT KIFLAG KXWANT LocC

R13 R14 R15 R2

TEXTA TYPE UFDBUSY VCADTLKP

ADTCHBA ADTFALNM ADTFALTY ADTFALUF

ADTFRW ADTFSORT ADIFSTC ADTFTYP
ARDTK ATYPSRCH BALR CODE203
FSTWP FVSECT F65535 JSRO
R12 R13 R14 R15
UFDBUSY

ADTADD ADICYL ADIDTA. ADTFLG1
ADTMFDN ADTMSK ADTHMX ADTMXENL
AFVS ARDTK BALR CDMSRCS
FFD FFYE FFF FILE
MODFLGS NUCON OSADTVTA QQDSK1
R1S R2 R3 R4
SHTICH SYSLOAD TBENT TEXT

ADTFDA ADTFFSTF ADTFLG1 ADTFLG2
ADTH ADTMFDN ADTMSK ADTMX
CODE203 DOSFLAGS DOSMODE FCBDSHMD

OSADTFST OSFST OSFSTLTH OSFSTRNXT
R2 R3 R4 RS
ADMSERL ADMSFREB ADTHM ADTSECT

BGCOM CHSANMS CODE203 COMNAME

DOSNEXT DOSRC DOSSECT DOSSVC
FSTN FSTSECT F4096 Loc
RO R1 R10 R11

ABWSECT
ADTPQNM3
AUSRILST
CUORRSAVE
DMSDBG
DCSSVC
LccC
OSFSTLTH
R3
VSAMFLG1

ADTFLG1
ADTMSK
CODE203
MISFLAGS
R3

VCADT NXT

ADTFDA
ADTHBCT
DSKADR
Loc

R2

ADTFLG2
ADTNUN
CODE203
FYSDSKA
REGSAVO
R5

TYPE

ADTFLG3
ADTPQN1
FCBFIRST
REGSAVO
R6

AERASE
DOSDD
DOSVOLNO
LTK

R12

ADMSFREB
ADTSECT
AUSRITBL
DBGAEN
DMSERR
DOSTRANS
MACDIRC
OSFSTHNXT
R4

VS AMRUN

ADTFLG2
ADT MX
CURRSAVE
NUCON

RU
VCFSTLKP

ADTFFSTF
ADTLHBA
DSKLCC
RUCON

R3

ADTFLG3
ADTPQM1
DIOSECT
FYSECT
RWMFD
R6
UFDBUSY

ADTFMIN
ADTPCM3
FCBNEXT
RO
R7

ALTASAVE
DOSDEV
COSVCLTE
LUBPT
R13

ADTFDA
AFVS
BALR
DBGEXEC
DMSEXCAB
EGPRS
MISFLAGS
OSMODLDW
RS

VS AMSOS

ADTFLG3
ADTNUM
DTAD
NUM

R5
VIRTUAL

ADTFLG1
ADTH
DSKLST
REGSAVO
R4

ADTFMFD
ADTPQM2
DSKADR
FVSFSTIC
RO

R7

UPBIT

ADTFQQF
ADTQQH
FCBOSFST
R1

R8

APPSAVE
DOSDSMD
DOSYSXXX
MISFLAGS
R14

ADTFFSTF
AINTRTBL
BATFLAGS
DEGFLAGS
DMSFRES

FCBFIRST
NOPAGREL
PGMNPSW '
R6

WAIT

ALTFMIN
ADTPQM2
EGPRO
RESET
R6
WRBIT

ADTFLG2
ADTMFDA
ERBIT
REGSAV1
R5

ADTFORCE
ADTPQM3
DSKLOC
FVSFSTIL
RrR1

R8
VCADTLKP

ADTFRO
ADTRES
FCBSECT
R10

R9

ASCANN
DOSDUM
DTAD
NUCON
R15

ADTFLG1
ATOSECT
BATFLAG2
DBGNSHR
DMSINTAB
FCBNUM
NRMRET
PGMOPSH
R7

ADTFORCE
ADTPQM3
ERRCODE
RO

R7

ADTFLG3
ADTMFDN
ERRCOD1
RWCNT
R6

ADTFQQF
ADTQQM
DSKLST
F800
R10

R9

ADTFROS
ADTROX
FLGSAVE
R11
SDISK

ASTATE
DOSEXTNO
DTAS

NUM

R2

ADTFLG2
AOPSECT
BATLOAD
DBGSHR
DMSITSR
FREELOWE
NUCON
RELPAGES
R8

ADTFRO
ADTRES
FSTFMODE
R1

R8

ADTFMDRO
ADTPQM2
FSTIC

RO

R7

ADTFRO
ADTRES
DTAD
JSRO
R11
SECTNUM

ADTFRW
ADTSECT
FVSECT
R12
STATEFST

ASTATEW
DOSEXTTB
ERRMSG
PIBPT

R3

90Ud19}9Y SS04D |9aqe]-03}-3|NPO\

oLL-2Z

¢ SEnTopA--UOT3IRUTEIS}IS®Q Welboid pue oTboT weisks oLE/HA HAI

MODULE

DMSARE

DMSARN

DMSARX

DMSASHM

DMSASN

DMSAUD

DMSBAB

DMSBOP

EXTERRAL REFERENCES (LABELS AND MODULES)

R4
VSAMFLG1

ABATPROC
AUPDISK
R12
VCADTNXT

ADTFLG1
FCBBYTE
FCBSECT
O0SSFLAGS
RU

AADTLKW
ERROR
FCBPROCC
FSTSECT
RESET

R6

AADTLKW
DOSFLAGS
FCBINIT
FSTIL

OPSECT

R14

ABATABND
BATFLAGS
DTADT
R12
TAPE1
TYP3340

ADMSFREB
ADTPQM 1
DTADT
REGSAVO
R3

ABGCOM
RO
R9

ABGCOM

RS
VSAMSERV

ADTDTA
BATCPEX
R4

ADTFRW
FCBCATML
FINIS
RELPAGES
R5

ADTFLG1
FCBBUFF
FCBRDR
JIOBCSW
RO

R7

ADTFLG1
DOsSSVC
FCBIOSW
FSTL
OSIOTYPE
R15

ABGCOM
BATFLAG2
FLAG2
R13
TAPEY
TYP3420

ADTADD
ADTPQM2
FFD
RWCNT
RY

ASYSCOM
R1
SSAVE

ACBCAT

R6
VSAMSOS

ADTFLG1
BATFLAGS
R15

ADTHM
FCBCLOSE
FSTL
RESET

R6

ADTFRW
FCBBYTE
FCBREAD
IOBIN
R1

RS

ADTFRH
DUMMY
FCBITEM
FSTM
OSSFLAGS
R2

ADEVTAB
BATRUN
FLAG3
R14
TEXT
TYP3525

ADTDTA
ADTSECT
FFE
RWFSTRG
R5

BGCOM
R10
SVEARR

ACBDDNM

R7

ADTFLG2
BATLOAD
R2

ADTHMX
FCBDD
FSTH
RO

R7

ADTHM
FCBCATML
FCBSECT
IOBIOFLG
R10

R9

ADTHM
ERROR
FCBPROCC
FSTSECT
PRFUSYS
R3

ADTDTA
BGCOM
FTRUCS
R15
TYP1403
VCADTLKP

ADTFDA
AFVS
FFF
RWMFD
R6

DOSRC
R12
SVEPSW

ACBERFLG

RS

ADTFLG3
BATROUN
R3

ADTSECT
FCBDEV
FSTSECT
R1

R8

ADTHX
FCBCLOSE
FCBTAP
MAINHIGH
R11
SYSUT1

ADTMX
FCBBUFF
FCBRDR
IOBCSW
PROTFLAG
RU

ADTFDOS
CLASDASD
FIR35MB
R2
TYP2314

ADTFLG3
AKILLEX
FINISLST
RO

R7

IJBABTAB
R13
SVEPSW2

ACBIN

R9

ADTFNOAB
BATUSEX
RU4

AOPSECT
FCBFORM
IRPUT
R10

R9

ADTSECT
FCBDD
FILE
MISFLAGS
R12

TEXT

ADTSECT
FCBBYTE
FCBREAD
IOBIN
RELPAGES
R5

ADTFLG 1
CLASTAPE
NUCON

R3
TYP2401

ADTFNOAB
ATRKLKP
FVSDSKA
R1

R8

NUCON
R14
SVEROF

ACBINFLG

SYSNAMES SYSNEND
ADTFRC ADTFROS
DTAD NUCON
RS R6

ASTRINIT BATFLAGS

FCBINIT FCBIOSW
IOBCSH IOBIN
R11 R12

TEXT VCADT LKW
cc CHNDLINE

FCBDEV FCBDSK
FLAG1 FLAG2

ROERASE NUCON
R13 R4
CcC CMNDLINE

FCBCATML FCBCLOSE
FCBSECT FCETAP

TOBIOFLG MAINHIGH
RESET RO
R6 R7

ADTFLG2 ADTFRO
CLASURI CLASURO
NUH PACK

R4 RS
TYP2415 TYP2420

ADTFUED1 ADTHBCT
ATRKLKPX AWRTK

FVSECT F3
R10 RrR11
R9 TYPE

OLDPSHWH OSTEMP
R15 R2
SVEROO SVERO1

T EXT

EDTFRW
NUM
E7

PATRUN
FCBITEM
YOBICFLG
E13
VIRTUAL

COMPSHT
FCBDSNAM
FREELOWE
.}

F15

COMPSHT
FCBLD
FILE
FAX

E1

K8

ADTFROS
LEVTAE
EUBPT
R6
TYP2501

ADTLAST
EALR
F800
R12
UFDBOSY

FCPTR
R3
SVERO9

TEXTA

ADTFSTC
RO
R8

COMPSHT
FCBPROC
MISFLAGS
R14

CONCNT
FCBFORM
FSTFV
OPSECT
R2

CORCNT
FCBDEV
FLAG1
MISFLAGS
R10

R9

ADTFRW
DOSFLAGS
RO

R7
TYP2540P

ADTHFDA
CODE203
KXFLAG
R13
UPBIT

PIBADR
R4
SYSCoM

ACBMACR1 ACBOFLGS ACBOLIGN ACBOUT

VCADTLKW

ADTH
R1
R9

ERRCODE

FCBPROCC

NOERASE
R15

CONWR
FCBINIT
FSTIL
OSIOTYPE
R3

CONWR
FCBDSK
FLAG2
NOERASE
R11
SAVEREGS

ADTSECT
DOSMODE
R1

R8
TYP2540R

ALTMFDN
DSKADR
KXWANT
R14

PIBPT
RS
VS AMFLG1

ACBSTSKP

VIRTUAL

ADTSECT
R10
TEXT

ERROR
FCBPROCO
NUCON

R2

DEVICE
FCBIOSW
FSTL
OSSFLAGS
R4

DEVICE
FCBDSNAM
FREELOWE
NUCON
R12
SYSUT1

ASYSREF
DOSVSAM
R10

R9
TYP3203

ADTMSK
DSKLOC
LOoC
R15

PIBSAVE
R6
VSAMSERV

ADMSERL

VMSIZE

AFINIS
R11
VCADTLKP

FCBBUFF
FCBREAD
NUM

R3

DMSARD
FCBITENM
FSTHM
RELPAGES
RS

DMSASD
FCBFORM
FSTFV
NUM

R13
TEXT

BATDCMS
DTAD
R11
SYSTEM
TYP3211

ADTNUM
DSKLST
NUCON
R2 -

PIK
R8

ADMSFREB

@oUD1I8J0Y SSOI) TOUEI-0}-8TNPOR

S®TIO03IO9ITA SHD

Ler-2¢

MODULE

DMSBRD

DHSBTB

DMSBTP

DMSBWR

DMSCAT

DMSCIO

DMSCIT

EXTERNAL REFERENCES (LABELS AND

ADTFDOS
ASYSREF
DEVCODE
DOSNEXT
EQCHK
LocC
PLIST
R10
SAVE1
TYP3350

AACTFREE
AFTFCL
AFVS
FSTITAV
RO

R7

ABATABND
FVSECT
R3

ABNBIT
BATTERM
NUCON
R15
UFDBUSY

AACTFREE
ADTNACH
AFTDBD
AFTID
APYVS
DMSLAD
REGSAV3
R4

ADMSFREB
R12

ABATABND
CSW
R15

ACTIVE
CODE203

ADTFLG1
AVSAMSYS
DOSBLKSZ
DOSNUM
FILE
LUBPT
PUBADR
R11
SAVE2
VCADTLKP

AACTLKP
AFTFCLA
ARDTK
FSTNOIT
R1

RS

ABATLIMT
FYSFSTIC
RU

ADMSCRD
BATUSEX
NUM

R2

AACTFRET
ADTRES
AFTDBF
AFTIL
AKILLEX
DMSLFSH
RESET

R5

BALR
R4

ABATLIMT
DE
R2

ADMSFREB
CONCCHWS

ADTFLG2
BALR
DOSBUFF
DOSOP
FILETYPE
NICLPT
PUBCUU
R12
SENSE
VIPSOP

ACTIVE
AFTFLG
AUSRAREA
FSTRECAV
R10

R9

ABATPROC
FVSFSTIL
R5

AFVS
BATXCPU
NUMFINRD
R3

AACTLKP
ADTSECT
AFTDBN
AFTIN
AQQTRK
FSTFV
RWFSTRG
R6

CMNDLIST
R15

ADMSERL
ERRET
R3

AFVS
CONSTACK

ADTFLG3
BGCOM
DOSDD
DOSOSFST
FREELN
NUCON
PUBDEVT
R4

SKIP
VMSIZE

ADNSFREB
AFTFST
BALR
FSTRP
R11
STATEFST

AFVS
LOCCNT
R8

ASCANN
BATXLIN
OFF

RY

ADMSERL
AFTADT
AFTFBA
AFTHM
AQQTRKX
FSTIL
RO

R7

CODE203
R2

BATFLAGS
ERRMSG
R4

AIOSECT
CSW

MODULES)

ALTFMFD
BLANKS
COSDEV
DOSRC
FSTIC
NUM
PUBPT
R15
SYSCOM
VSANFLG1

AFTADT
AFTFYV
BALRY
FSTSECT
R12:
STATERO

ALDRTBLS
NUCON
TBENT

ASYSNAMS
BATXPRT
PACK

RS

ADMSFREB
AFICLA
AFTFCL
AFTN
ARDTK
FSTSECT
R1

RS

FSTFINRD
R3

BATLSECT
NUCON
R5

ASVCSECT
CURRIOOP

ADTFRO
BSR
DOSDSMD
DOSSECT
FSTHN

ON
PUBTAPHM1
R2
SYSNAMES
VSAMRUN

AFTCLA
AFTIC
CODE203
FVSECT
R13
TYPE

AUSRAREA
NUM
TEXT

BATCPEX
BLK
RESET
R6

ADTDTA
AFTCLB
AFTFCLA
AFTNEW
ATFINIS
FSTWP
R10

R9

MISFLAGS
R4

BATNOEX
NUM
R6

ATTN
DBGEXEC

ADTFRCS
BUFFER
DOSDUK
DOSSYsS
FSTSECT
OSFST
PUBTAPM2
R3
SYSNERD
VSAMSERV

AFICLB
AFTID
DISK$ SEG
ITEM

R14
VNSIZE

BATDCHS
RESET
TYPE

BATDCHS
CHSSEG
RO

R7

ADTFLGI
AFTCLD
AFTFCLX
AFTOCLDX
ATRKLEP
FYSECT
R11

TEXT

MSGFLAGS
TYPE

BATPUNC
RO
R7

ATTNHIT
DBGEXINT

ADTFRW ADTSECT
cc CMSVSAM
DCSEXT DOSEXTCT
DOSTRANS DOSUCAT
F7 HOLD
OSFSTFM OSFSTRFM
PUBTAP7 READ

RU R5
TEMPSAVE TEXT
WRITE Wrn

AFTCLD AFTCLN
AFTIL AFTIN

DMSLFS FSCBT
NUCON PLIST
R15 R2

BATFLAGS BATFLAG2
RO R1

BATFLAGS BATFLAG2

EDIT ERROR
R1 R10
R8 R9

ADTFLG3 ADTFRW
AFTCLDX AFTCLN
AFTFLG AFTFLG2
AFTOLDCL AFTRL
ATRKLKPX AUPLISK
KXFLAG KXWART
R12 R13
TEXTA TYPE

NEGITS NOTYPING

BATPUNL EATRUN

R1 R10
R8 TEXTA
BALR BATFLAG2

DBGFLAGS DE

AERASE
CODE203
DOSFIRST
DOSUCNAM
IC
OSFSTXNO
RESET

R6

TYPE

AFTDBA
AFTRD
FSCBFLG
READ

R3

BATLOAD
R12

BATMOVE
FVSECT
R11
SYSNAME

ADTFSTC
APTCLX
AFTFST
AFTRP
AWRTK
LoC

R14
UFDBUSY

NOCON
BATXLIM
R11
WAIT

BATSTOP
DMSERR

ASTATE
COMNAME
DOSFLAGS
DOSVSAM
IJBFLGOY
OSFSTXTN
RMSROPEN
R7
TYP2314

AFTDBD
AFTRP
FSCBFV
READCNT
R4

BATNOEX
R14

BATNOEX
IPLADDR
R12
SYSNAMES

ADTFXCHN
AFTD
AFTFULD
AFTSECT
BALR
NUCON
R15
VIRTUAL

NUMFINRD

BATXPUN
R12

CAW
FSTFINRD

ASYSCOM
CONSOLE
DOSFORM
DOSYSXXX
IKQACB
PACK

RO

R8
TYP3330

AFTDBN
AFTSECT
FSTFV
REGSAV3
RS

BATRUN
R15

BATRERR
KEYS
R13
SYSNEND

ADTHM
AFTDBA
AFTFV
AFTWP
CODE203
NUM

R2
VMSIZE

RO

BUSY
R13

CE
FVSECT

ASYSNAMS
DEC
DOSINIT
DOUBLE
INPUT
PIBPT

R1

R9
TYP3340

AFTFBA
AFTHRT
FSTIC
RWFSTRG
R6

BATUSEX
R2

BATSTOP
LINE
R14
TEXT

ADTHMX
AFTDBC
AFTIC
AFTWRT
DMSERR
PLIST
R3
WRBIT

R1

CAW
R14

CHMSTAXE
IO0OPSW

edoUdaisIayd Ss01) Iaqe]-o03-oTRPON

ZLL-2

¢ SUNTOoA--UOT3IRUTHMI®}SQ Wexboid pue o1boT WoIsLs QLE/WA WEI

MODULE

DMSCLS

DMSCMP

DMSCPF

DMSCPY

DMSCRD

DMSCWR

DMSCWT

DMSDBD

DMSDBG

EXTERNAL REFERENCES (LABELS AND MODULES)

KXFLAG
OVSON
R3
TAXEEXTS
UFDBUSY

ACBAMO
CPSTAT
FILETYPE
PUBCUU
R14

TYPE

ADMSFREB
READ
R7

ABATPROC
R10

AACTLKP
BUFAD
FSTN

R1

R8

ABATPROC
CSW
NOTYPING
R15
WAITLST

ADMSFREB
FVSECT
R1

R8

AFVS
R12

ADEVTAB
DBGSWTCH
NUCON

R7

ABNPSW

KXWANT
ovsso

RU
TAXEFREQ
WAIT

ADMSERL
DE
FREELN
PUBDEVT
R15
VIPINIT

ADTHM
RO
R8

BALRSAVE
R12

AADTLKW
CL
FSTSECT
R10

R9

ADMSFREB
DMSCAT
NUCON
R2

AFVS
F256
R10
R9

AOPSECT
R 14

ARGS

DEC
PRINTER1
R8

ABNREGS

LocC
OVSTAT
R5
TAXEIOL
WAITSAVE

ADMSFREB
DEVCODE
IKQACB
PUBPT
R2
VIPSOP

ADTSECT
R1
R9

BATCPEX
R14

ADTCFST
CODE
FSTYR
R11
TEXT

AFVS
DMSCITB
NUMFINRD
R3

AOPSECT
KXFLAG
R11
TEXT

PVSECT
R15

BLANKS
DECDEC
RO
R9

ABWSECT

LSTFINRD MISFLAGS MSGFLAGS
PACK PENDREAD PENDWRIT
R6 R7 R8

TAXEIOWS TAXELNK TAXERTRA

AERASE AFINIS ASYSREF
DOSDD DOSDSNAM DOSDSTYP
LASTREC LOC LUBPT
PUBTAPM1 READ RESET

R3 RU R5
VIPTCLOS VSAMFLG? VSAMSERY
AFINIS ARDBUF AREA

R10 RT11 R12

SAVE TEXT TYPE

BATFLAGS BATLOAD BATRUN
R15 R2 R3

ADTCHBR ADTFLG1 ADTFRW
DOSFLAGS DOSSVC FSTD

HEX INPUT MISFLAGS
R12 R13 R14
TYPE UNPACK

AINTRTBL AOPSECT ATTN
DMSERR FSTFINRD FVSECT

NUMPNDWR OPSECT PENDREAD
R4 RS R6
AOUTRTBL BALR CODE203
KXWsvC MSGFLAGS NOTYPING
R12 R13 R14

WAIT WAITLST

KXFLAG KXWSVC NUCON
R9 WAIT WAITLST
CAW CCWPRIRT CONHCT
DEVTAB Fu096 INPUT
R1 R10 R11
SAVE1 SILI TBLEND

ADMSCRL ACMSERL AIOSECT

NOTYPING NUCON NUMFINRD NUMPNDWR
RO R1 R12 R13

R9 SVCSECT TAIEIAD TAIEMSGL
TAXESTAT TAXETAIE TAXETSOF TEXT
AVSAMSYS AVSRWOREK BALR BGCON
DOSFIRST DOSNEXT DOSSECT DOSTRANS
NICLPT NUCON NUM OFF

RUN RO R1 R10

R6 R7 R8 R9
WORKFILE WRITE WIHM

BALR CODE203 ERROR FILE

R4 R15 R2 R3
VIRTUAL

BATUSEX BS CHMNDLINE CMNDLIST
R4 R5 R6 R7

ADTH ADTSECT AFSTLKE AFSTLKW
FSTFAW FSTFB FSTFV FSTIC
NUCOR NOUM OPS ECT PACK

R15 R2 R3 R4

BALR BATFLAGS BATLCAD BATRUN
F255 KXFLAG KXWSVC LoC
QSWITCH RO R1 R11

R8 R9 T EXT TS OAT CNL
CCNSOLE CONSTACK CSW c1

NUCON NUMPNDWR OPSECT PENDREAD
R15 R2 R3 R4
NUMPNDWR OPSECT PENCREAD RO
CPULOG DBDDMSG DBDEXIT DBGFLAGS
LASTLINE LINE LINE1 LINE1A
R14 R15 R2 R3

TEXT

ARILLEX ACPSECT ARGMAX ARGS

OSSFLAGS
R4

TAIERSAV
TSOATCNL

BSR
DOSYSXXX
PIBPT
R11
SENSE

LoC
R4

NUCON
R8

AFTIC
FSTIL
RELPAGES
RS

CODE203
LSTFINRD
R12
TSOFLAGS

DMSCITA
PENDWRIT
R5

R1

DBGOUT
LINE1B
RU

ARGSAV

OSWAIT
R1S
TAXEADDR
TSOFLAGS

BUFFER
DOUBLE
PLIST
R12
TAPE

NUCON
RS

RO
R9

AFTSECT
FSTITAV
RESET
R6

CONINBLK
MISFLAGS
R13
UCASE

DMSCITB
REDERRID
R6

R10

DBGRECUR
LINE1C
R5

ARGSCT

OVSHO
R2
TAXEEXIT
UE

CODE203
FILE
PUBADR
R13
TEXT

NUM
R6

R1

BLANKS
FSTH
RO

R7

CONINBUF
MSGFLAGS
R14

WAIT

DMSERR
RO
R7

R11

DBGSECT
MVCNT1
R6

BALRSAVE

8ouUo18I8Y SS0IJ T[2qET-03-OTNPON

309ITA SHD

seTIO0

ELL-C

MODULE

DMSDIO

DMSDLB

DMSDLK

DMSDMP

DMSDOS

EXTERNAL REFERENCES (LABELS AND MODULES)

BEGAT
DBGEXINT
DMSABNRT
FPRLOG
JFLAGS
PRFPOFF
R5
TBLEND

ADIOSECT
CCWX
DOUBLE
LASTHED
R1

RS
VCADTLKP

ADMSFREB
DOSCBID
DOSEXTNO
DOSSECT
FILE

R12
SSAVE

AADTLKP
BLANKS
DosoP
FSTFB
F6
OSFST
RESET
SYSUT1

ADMSFREB
R2

AAMSSYS
ANCHLENG
AVSREOJ
DIRN
EGPRY
Loc
PIBFLG
R13
SVEARA

BITS
DBGFLAGS
DMSABW
FO
LASTDMP
PROTFLAG
R6

TEXT

ADMSFREB
CCW1
DTAD
LASTREC
R10
SAVEADT
WRITE

ADTFDOS
DOSCHMs
DOSEXTTB
DOSSVC
LocC

R13
SYSCODE

AADTLKW
BUFFER
DOSOSFST
FSTFRW
HEX
OSFSTDSK
RO

TEXT

ASYSREF
R3

ABGCOM
ANCHPHLYN
BALR
DIRNAME
FCHLENG
LTK
PIBPT
R14
SVEPSW

BRKPNTBL
DBGOUT
DMSCHR
F15

LINE
RETSAV
R7
TPFUSR

ADTADD
CCWIA
DTADT
Loc

R11
SECTNUM
WRTKF

ADTFLG 2
DOSDD
DOSFIRST
DOSSYS
LUBPT
R14
SYSTEM

ABORT
COMNAME
DOSSECT
FSTFRWX
JOBDATE
OSFSTXTN
R1

TEXTA

BALR
RY

ABNBIT
ANCHPHNM
BGCOM
DIRTT
FCHTAB
MAINHIGH
PIBSAVE
R15
SVEPSW2

Caw
DBGPGMCK
DMSCHT
F6
LOWSAVE
RSTNPSW
RS

TSYHM

ADTDTA
CCW2
ERRCODE
NUCON
R12
SEEKADR
XRSAVE

ADTFROS
DOSDDCAT
DOSFLAGS
DOSTYPE
NICLPT
R15

TEXT

ADTFLG 1
CsSW
DOsSsSVC
FSTFV
LABLEN
OUTPUT
R2
TYPE

BGCOM
R5

ACMSRET
ANCHSECT
CALLER
DMSFCH
FREELOWE
MAINLIST
PIB2PTR
R2
SVEROF

CONHCT
DBGRECUR
DMSDBD
GPRLOG
MVCNT

RO

RY
TYPFLAG

ACTFLG1
CODE203
FREERO
NUM

R13
SENCCW

ADTSECT
DOSDEVY
DOSINIT
DOSUCAT
NUCON

R2
VCADTLKP

ADTFRW
co
ERROR
FSTIC
LUB
PACK
R3
WRITE

CODE203
R6

ADIKQLAB
ANCHSTSW
CLKVALMD
DMSXCP
FVSECT
MAINSTRT
PIK

R3
SVEROO

CONHXT COKWR CONWRL COU KT
DBGSAV1 DBGSAV2 DBGSECT DBGSET
DMSERR DMSIOWR DMSITP DUMPLIST

HEX HEXHEX Xc INPUT
MVCNT1 MVCNT2 NUCON OFF
R1 R10 R13 R14
SAVE1 SAVE2 SCAW SILI

USERKEY VMSIZE WAITLIST WAITRL

ADTFRO ADTFRW ADTSECT AFVS
CSW DEVTYE DIAGNUM DIAGRET
FVSECT INHIBIT IOQCOMM I0oO0LLD
PLIST QQODSK1 QQDSK2 CQT RK

R14 R15 R2 R4
SENSB TEXT TOOBIG TYPE
ASYSREF BALR BGCOM cusop

DOSDOS DOSDSK DOSDSMD DOSDSNAM
DOSJCAT DOSMODE DOSNEXT DOSNUM

DOSUCNAM DOSVOLNC DOSVOLTB DOSXXX
NUM PUBPT READ RESET

R3 RU4 RS R6
VIRTUAL VSAMFLG!1 VSAMSERV VSJOECAT
ADTHM ADTSECT AERASE AFINIS
DATE DEC DOSDD DOSDEV
ESD1ST FREELCWE FSCBBUFF FSCBD
FSTIL FSTHM FSTSECT F1

LUBPR LUBRES LUBRLB LUBO 14
PLIST PO PUBADR PUBCUU
R4 RS R6 R7
EOCADR LoC NUCOR NUM

R7 TEXT TYPE

ADMSERL ADMSFREB AFVS ALTASAVE

AOSRET APPSAVE ARFLG ARURTBL
CMSVSAM CODE203 COMNAME CURRSAVE
DOSFLAGS DOSRC DOSTRANS DOSVSAM
HEX TJBABTAB IJBCCWT IJBFTTAB
NOTEXT NUCON NUCRSY3 NUM
PNOTFND PPBEG PPEND RO

R4 RS R6 R7
SVERO9 SYSCOK SYSNAMES SYSNEND

CSW
DBGSWTCH
EXAMLC
INPUTSIZ
OPSECT
R15
SSAVE
WAITSAVE

AKILLEX
DIOBIT
I00PSW
READ

R5
TYP2314

CODE203
DOSDSTYP
DOs0s
DOSYSXXX
RO

R7

ARDBUF
DOSDSK
FSCBFM
¥2
NOAUTO
PUBDEVT
R8

PLIST

ANCHENDA
ASYSCOH
DACTIVE
EGPRO
INTINFO
OLDPSW
R1

k8

T EXT

CURRSAVE DBGABN
DEC DECDEC
EXAMLG EXTOPSW

INPUT1 IOOPSW
ORG ouTpT1
R2 R3

STOPAT SYMTABLE
WIRDCNT XPSW

ANUCEND EALR
DIOFLAG DIOFREE
KXFLAG KXWANT
RETREG RWCCW
R6 R7
TYP3330 TYP3350

CONREAD CURRSAVE
DOS DUM DOSEND
DOSOSDSN DOSOSFST

DOUBLE EDIT
R1 R10
R8 R9

ASTATE AWRBUF
DOSFIRST DOSFLAGS
FSCBFN FSCBFV
F3 F4

NoMAP NOCON
PUBPT RA
R9 SF
RO R1

ANCHENTP ANCHINST
ASYSNAMS ASYSREF
DATIPCMS DIRC
EGPR1 EGPR14
JCSW2 JCswi

OSTEMP PCPTR
R10 R11
R9 SSAVE

TEXTA TPFSVO

DBGEXEC
DMPTITLE
FIRSTDMP
IPLPSW
PGMOPSW
R4
SYMTBG

CAW
DIOSECT
LASTCYL
RO

R8
UFDBUSY

DOSBUFSP
DOSENSIZ
DOSPERM
EGPRO
R11
SAVEXT

BGCoN
DOSMODE
FSCBITNO
F5

NUM
READLST
SYSLINE

R12

ANCHLDPT
AVSAMSYS
DIRLL
EGPR15
JOBDATE
PIBADR
R12
SVC125Av
TYPFLAG

®0U83193J9y¥ SS01) [9qeT-03} -BTNPOR

hiL-¢

Z eunfop--uor3leuUTmIa}aqg weiboid pue o1boq wa3ysis OLE/RA RAI

MODULE

DMSDSK

DMSDSL

DMSDSY

DMSEDC

DMSEDI

DMSEDX

EXTERNAL REFERENCES (LABELS AND MODULES)

TYP3330

ABATABND
AWRBUF
FSTFV
KXFLAG
RS

ADTFLG 1
ERROR
PO

R5

BGCOM
HEX
PUBADR
R2
VMCOMP

DUALNOS
R7

ADEVTAB
ATTN
CHNGCNT
DMSSCR
FLAG
INPUT
MISFLAGS
PLIST
R10
SAVCHD
TABLIN
UTILFLAG

ACMSSEG
ARDBUF
CLASTERM
EDCB
FMODE
IOLIST
ON

R13
SPARES
TYP 3277

TYP 3340

ADISK
BATDCHMS
FSTIC
KXWANT
R6

ADTFRW
FCBIOSW2
PS

R8

BLANKS
INPUT
PUBCUU
R3
VMDISP

EDCB
RS

ADMSERL
ATTNLEN
CHNGFLAG
DOSFLAGS
FLAG2
INVLD
MSGFLAGS
PTR1

R13

SAVE
TABS
VERCOL1

ADEVTAB
ASTATE
CHMDBLOK
EDCBEND
FNAME
IOMODE
PADBUF
R 14
SUBACT
TYP 3278

TYP 3350

ADTFTYP
BATFLAGS
FSTIL
NUCON

R7

ADTHM
FCBITEM
READ
SAVE1

BLANK?2
LUB
PUBPT
RU
VMDISP1

RO
R9

AERASE
AUTOCNT
CHNGMSG
DOSSYC
FMODE
I0ID
NEWMODE
PTR2
R14
SCRFLGS
TEMPTAB
VERCOL 2

ADMSFREB
ASTATEW
CMSSEG
EDCBLTH
FREELEN
ITEM
PADCHAR
R15
SUBFLAG
VCF STLKP

UEDBUSY VIPINIT VMSIZE

ADTID ADTSECT AERASE

BATFLAG2 BATRUN BLANKS
FSTHM FSTN FSTSECT
NUM READ RO

RS RY STATER1

ADTSECT AERASE ASTATE
FCBMVPDS FCBSECT FILE

RESET RO R1

SF TEXT VCADTLKP
COMNAME DEC DOSDD
LUBCLB LUBP LUBPR
READ RESET RO

RS R6 R7

R1 R10 R13
SAVEAR

AEXTEND AFINIS AFSTFNRD
AUTOCURR AUTOREG AWRBUF
CHNGNUM CMODE CONSOLE
EDCB EDCT EDIT
FNAME FPTIR FREELERN
IOLIST IOMODE ITEK
NEWNAME NEWTYPE NOTIPING

PTR3 RARGE REGSAV
R15 R2 R3
SCRFLG2 SEQNAME SERSAV
TEXT TIN TOUT
VERLEN XAREA XXXCHD
ADTH ADTSECT AEDLIN
ASYSNAMS BALR BLANK1

CODE203 CONSOLE CORITEM
EDLIN EDRET EDWORK

FSTD FSTFINRD FSTFMODE
JAR LINE LINELOC
PLIST PTR1 PTR2

R2 R3 RY

SUBREJ SYSNAMES SYSNEND
VERCOLT VERCOL2 VERLEN

VSAMFLG1

AFINIS
BUFFER
FSTIT
R1
TEXT

BUFFER
FSTL
R10
WRITE

DOSFIRST
LUBRES
R1

RS

R14

AINCORE
BLOC
CORITEM
EDLIN
FSIZE
JAR
NOCON
REGSAVX
RU
SERTSEQ
TRNCNUM
XYCNT

AEXTEND
BLANK2
DCSSAVAL
ENDBLOC
FSTRECCT
LMSTART
PTR3

R5

TABS
VIRTUAL

VSAMRUN

AFVS
CCUNT
FVYSECT
R13
TYPE

DA
FSTSECT
R12

DOSFLAGS
LUBRLB
R10

R9

R15

ALCHAR1
BYTE
CCUNT
EDRET
FTYPE
LIRE
NOM
RELPAGES
RS
SERTSW
TRUNCOL
XYFLAG

AFINIS
BLANK3
DCSSFTLAG
ENDTABS
FSTRECFM
LoC

RECS

R6

TEXT
ZCNE1

¥S AMS ERV

AKILLEX
DEC
FYSFSTN
R14
UFDEUSY

DIRNAME
FXD
R4

DOSMODE
LUBSLB

R11

S AVERO

R2

ALCHAR2
CARLCINCR
CRBIT
ZNDRLOC
'S
LINERO
OFF
IEPCNT
R6
SIGHNAL
TVERCOL1
TAREA

AFLAGLCC
3LOC
DCSSLDED
ERROR
PTYPE
LOCCHT
REPCNT
a7

TIN

4 ONE2

WAIT

ARDBUF ASTATE
ERROR FILE
F65535 F800

R15 R2

UPBIT VCFSTLKP

DIRR DIRTT
INPUT RUCON
R15 R2

DOSSECT ERROR

LUBO 14 KUCON
R12 R13

S EEK TEXT
R3 R4

ALTLIST ARDBUF
CARDNO CASEREAD
DEC DECIMAL
ENDT ABS ERROR
GETFLAG HALF
LMCURR LMINCR

OR PACK
RESET RPLIST
R7 R8

SPARES STACKAT
TVERCOL2 TWITCH
ZONE1 ZOKE2

AFSTFNRD ALINELOC
BUFFER CARDINCR

DEC DEVTAB
FILE FLAG

FV INVLDHDR
MAINAL NUCOR

RO R1

R8 R9

TRUNCOL TWITCH

ATYPSRCH AUPDISK
FNAME FSTDBC

HOLD IADT
R3 R4
WRBIT

DOSFLAGS DOSSYVC
NUM OUTPUT
R3 RY

FREELOWE F1

NUM PLIST
R4 R15
TIC TYPE
RS R6
AREA ASTATE

CASESW CHGTRUNC
DEVTAB DITCNT
FILE FILEMS
HEX INCRNO
LMSTART MACRO
PADBUF PADCHAR

RO R1

R9 SAVCHNT
STACKATL STRTNO
TYPE TYPFLG

ALTMODE ANUMLOC
CASESW CHNGMSG
DOSFLAGS DOSSVC
FLAGLOC FLAG2

I0AD I0ID
KON NUMLOC
R10 R12
SCRBUFAD SEQNAME
TYPE TYPSCR

8oUa19J9d SS01) [9qeRT-03-9TNPOR

309ITA SHD

saT1i0

SLL-T

MODULE

DMSERR

DMSERS

DMSEXC

DMSEXT

DMSFCH

DMSFET

DMSFLD

EXTERWAL REFERENCES (LABELS AND MODULES)

ABATABND AUSERRST BATFLAGS

ERBL
ERMESS
ERSBD
ERT1
R4

AACTFRET
ADTLFST
AQQTRKX
DSKLOC
FSTT

R1

R8

ACMSSEG
DCSSFLAG
FSTLRECL
R12
SYSNEND

ADMSFREB
ASTATE
DSKLIN
F1
OSRESET
R5
VCADTLKW

ADMSERL
CsW
DOSFIRST
FCBDSK
LoC
PPEND
R15

TIC

ABGCOM
DMSERR
LocC

RU

ABATABND
FCBCON
FCBINIT

ERDSECT
ERNUM
ERSBF
ERT2

RS

AACTLKP
ADTLHBA
ARDTK
DSKLST
FVSECT
R 10

RY

ADMSFREB
DCSSLDED
LocC

R13

TEXT

ADTFDOS
BALR
ENDFREE
LABLEN
OSSFLAGS
R6
VIPINIT

ADMSFREB
DACTIVE
DOSFLAGS
FCBDSNAM
LUBPT

PS

R2
VIRTUAL

ADMSERL
DOoscCoMP
LOCCNT
R5

ASTATE
FCBDD
FCBIOSW

ERF 1BF
ERPAS13
ERSBL
NUCON
R6

AACTNXT
ADTHM
ASTATEW
ERBIT
FYSERASO
R11
SIGNAL

ADTHM
DMSLFS
MISFLAGS
R14

TYPE

ADTFLG 2
BLANKS
ERR$202
LASTCMND
PREVCMND
R7
VSAMFLG1

ANCHSIZ
DATACHK
DOSKPART
FCBINIT
MAINHIGH
PUBPT

R3
VSAMFLG1

ADMSFREB
DOSFLAGS
NOTEXT
R6

BATDCMS
FCBDEYV
FCBLRECL

BATFLAG2
ERF 1HD
ERPBFA
ERSECT
OLDPSW
R7

ADMSERL
ADTRES
ATFINIS
ERRCOD1
FVSERAS1
R12
STATEFST

ADTSECT
EXADD
NEGITS
R15

ADTFMFD
BUFFER
ERRMSG
LASTEXEC
PREVEXEC
R8

ASTATE
DIRAAA
DOSLIBL
FCBOP
MAINLIST
READ

RU
VSAMRON

ALDRTBLS
DOSMODE
NUCON

R7

BATFLAGS
FCBDOSL
FCBMEMBR

BATRUN
ERF 1SBN
ERPCS
ERSFA
RO

R8

ADMSFREB
ADISECT
ATRKLKPX
ERRMSG
FVSERAS2
R13
STATER1

AEXEC
EXECFLAG
NOSYS

R2

ADIFROS
BUFSIZE
EXADD
LINKLEN
READCNT
R9

ASYSREF
DIRC
LOSREAD
FCBOSFST
MAINSTRT
READCNT
RS
VSAMSERYV

ASYSCOM
DOSRC
NUM
START

BATFLAG2
FCBDSK
FCBMODE

BATSYSAB
ERF1sSB1
ERPF1
ERSFL

R1

R9

ADTADD
AFTADT
AUPDISK
ERSFLAG
KXFLAG
R14
TEXTA

AFINIS
EXECRUN
NUCON
R3

ADTH
CODE203
EXLEVEL
LoC

RO

SKIP

AUSRAREA
DIREEE
DOSSYC
FCBSECT
NOTEXT
RELPHSE
R6
VSMINSTL

AUSRAREA
DOSSVC
PNOTFND
STRTADDR

BATRUN
FCBDSMD
FCBNEXT

CALLEE
ERF1TX
ERPF2
ERSFLST
R10

SH

ADTCFST
AFTDBC
BALR
FSTBKWD
KXWANT
R15
TYPE

AFVS
EXLEVEL
NUM

R4

ADTSECT
CONDFLG
FLAG
MSGFLAGS
Rt
SUBFLAG

BALR
DIRLL
DOSTRANS
FREELCWE
NUCON

RO

R7

BALR
FCHAPHNM
RO
SYSCOM

CONREAD
FCBDSKAM
FCBNUN

CAW
ERF2CHM
ERFHDR
ERSSZ
R12
SSAVE

ADTCHBA
AFTFCL
CCDE203
FSTDBC
LCC

R2
UFDBOSY

ACPSECT
EXNUM
OPSECT
R5

AFINIS
CURRDATE
FLAG1
NEED

R10
SVC$202

BGCOM
DIRR
DOSVSAM
FRERESPG
OSFST

R1

R8

BGCOM
FCHLENG
R1
TEENT

CURRSAVE
FCBDSORG
FCBOSDSN

CONCCWS
ERF2LI
ERPLET
ERT EXT
R13

ADTFLG1
AFTFLG
DMS ERR
FSTFCL
NUCON
R3

ASYSNAMS
FFD
PLIST

R6

AGETCLK
CURRTIME
FMOLE
NOTYPING
R4
TIMEUF

BUSQUT
CIRNAME
EQCHK
HIPHAS
OSFSTDSK
R10

R9

CODE203
FCHOPT
R12
TEXT

DUMMY
FCBDSTYP
FCBPCH

CURRSAVE
ERF2DT
ERPNUM
ERTPL
R14

ADTFRO
AFTPFST
DMSLAD
FSTFWIP
NOM

R4

BALR
FILEBUFF
RO

R7

AOPSECT
DOSDSK
FNAME
NUCON
R15
TYPLIN

cC
DIRPPP
ERRMSG
HIPROG
OSESTXTN
R11

S EARCH

COMNAME
FCHTAB
R14
VSMINSTL

EGPRO
FCBDUH
FCBPROC

DMSCWR
ERF2PR
ERPSBA
ERTPLA
R15

ADTFRW
AFTSECT
DMSLADW
FSTH

ON

RS

CMSSEG
FILEBYTE
R1

R8

APOINT
DOSFLAGS
FREENEXT
OFF

R2
TYPLIST

CMDREJ
DIRRR
ERROR
IHADEB
PCTVSaAM
R12
SEEK

DACTIVE
HIPHAS
R15

FCBBLKSZ
FCBEND
FCBPTR

DMSCHT
ERF2sI
ERPTXA
ERTPLL
R2

ADTFSTC
AFVS
DHSLFSW
FSTN
REGSAV1
R6

CODE203
FILEMODE
R10

R9

ARDBUF
DOSMODE
FSIZE
ON

R3
UNPACK

CODE203
DIRTT
FCBDD
INPUT
PNOTFND
R13 -
SF

DIRN
IJBFTTAB
R2

FCBCASE
FCBENSIZ
FCBRDR

DMSERT
ERLET
ERSAVE
ERTSIZE
R3

ADTHBCT
AKILLEX
DSKADR
FSTSECT
RO

R7

DCSSAVAL
FSTD

R11
SYSNAMES

ASCANO
DOSSVC
FSTFIRRD
OPSECT
RU
VCADTLKP

COMNAME
DIRTTR
FCBDEV
INTREQ
PO

R14
TEXT

DIRNAME
LASTLOC
R3

FCBCATML
FCBFIRST
FCBRECPHN

90USI93J9Y SS0ID TaqeI-03-aTNpON

9LL-2

Z suWnfois--UOT3RUTHIBYISQ weiboxg pue otboT me3isks oLE/WA RAT

MODULE EXTERNAL REFERENCES (LABELS AND MODULES)

FCBSECT FCBTAP FCBTAPID FCBXTENT FILE FLAG1 FLAG2 FLAG3 JFCEINLC2 JFCBUFNO JFCKEYLE JFCLIMCT JFCOPICL
LocC NUCOR RUM PACK RESET RO R1 R10 R11 R12 R13 R14 R15
R2 R3 RY R5 R6 R7 RS R9 SSAVE TABEND TEXT TYPE

DMSFNC ATTN CONREAD DMSABNSV DMSBWR CMSCAT DMSCIOSI DMSCITDB DMSCPF DMSCRD DMSCWR DMSCWT DMSDEG DMSERR
DMSEXC DMSFET DMSFREB DMSFREES DMSFREEX DMSFRES DMSFRETS DMSFRETX DMSITET DMSITSK DMSITSXS DMSLADAD DMSLDRA
DHSLOA DMSMOD DMSPIO DMSPIOCC DMSPIOSI DMSSTGAT DMSSTGCL DMSSTGSB LCHMSSTGSY DMSVSR FINIS LOC NUM
RO START TRAP TYPLIN WAIT WAITRD

DMSFNS AACTFRET AACTLRKP ADIOSECT ADMSERL ACMSFREB ADTADD ADTDTA ADTFLG3 ADTEFTYP ADTFUPD1 ADTFXCHN ADTNACW ADTRES
ADTSECT ADTXKREC AERASE AFTADT AFTCLA AFTCLB AFTCLL AFTCLDX AFTCLN AFTCLX AFTDBA AFTDBD AFTFBA

AFTFCL AFTFCLA AFTFCLX AFTFLG AFTFLG2 AFTFST AFTFULD AFTH AFTN AFTNEW AFTPFST AFTRD AFTSECT
AFTUSED AFTRP AFTHRT AFVS AKILLEX AQQTRKX ARDTK ATRKLKPX ATYPSRCH AUPDISK AWRTK BALR BALRSAVE
CLKVALMD CODE203 DATIPCMS DEVTYP DIOCSW DIOSECT DISK$SEG DMSERR DMSLFSW DSKLOC DSKLST FINISLST FNBIT
FSTD FSTFB FSTIC FSTH FSTN FSTRP FSTSECT FSTT FSTWP FSTYR FVS ECT HEX KXFLAG
KXWANT LocC NUCON NONM QQODSK1 REGSAV3 RWFSTRG RO R1 R10 R11 R12 R13
R14 R15 R2 RS R6 R7 R8 R9 SECTNUM SEEKADR SENSB STATEFST SUBFLAG
SUBINIT TEXT TYPE UFDBUSY VIRTUAL

DHSFOR ADEVTAB ADMSFREB ADTCYL ADTDTA ADTFALUF ADTFDA ADTFDCS ADTFFSTF ADTFLG1 ADTFLG2 ADTFQQF ADTFRO ADTFROS
ADTFRW ADTHBCT ADTID ADTLAST ADTLEFT ADTLHBA ADTHM ADTMSK ADTNUM ADTPQM1 ADTPQM2 ADTPQM3 ADTQQOM
ADTRES ADTSECT ADTUSED ADTIST AFINIS ARDTK AUPDISK AWRTK EALR ccC CODE203 DTAD FLAG
LoC NUCON NUM QQDSK1 RESET RO R1 R10 R11 R12 R13 R4 R15
R2 R3 RY4 RS R6 R7 R8 R9 SECTNUM SEEKADR SENSB SENSE SILI
START TEXT TYPE VCADTLKP WAITRD

DMSFRE ABNPSW ABNREGS ABWSECT ACALL ADMSERL AFREETAB ASSTAT ASVCSECT AUSRAREA BALR BATFLAGS BATLOAD BLOCKLEN
CALLER CL CODE203 CURRSAVE DMSABNGO DMSABW DMSERR DMSFRT DMSNUCU FINIS FLAGS FLCLN FLHC
FLNU FLPA FRDSECT FREEFLG1 FREEFLG2 FREEHN FREEHU FREELN FREELOWE FREELOW1 FREELU FREESAVE FRF1B
FRF1C FRF 1E FRF 1H FRF 1L FRF 1M FRF 1N FRF1V FRF2CKE FRF2CKT FRF2CKX FRF2CL FRF2NOI FRF2SVP
LoC LOCCNT MAINHIGH MAX MAXCODE NUCCODE NUCKEY NUCOR NUM POINTER PRFPOFF PROTFLAG RO
R1 R10 R11 R12 R13 R14 R15 R2 R3 RY4 R5 R6 R7
R8 R9 SIZE SKEY SSAVE SVCAB SVCSECT SYSCODE TCODE TRNCOLE TYPE USARCODE USERCODE
USERKEY VMSIZE

DMSGIO ADEVTAB CMDBLOK CSW EDCB LOC NUCON RO R1 R10 R13 R14 R1S R2
R3 RU4 RS R9

DMSGLB AFINIS ARDBUF ASTATE BUFFER DOSLBSY DOSLIBL FILE LocC MACLESV MACLIBL NUCON RO R1
R11 R12 R13 R14 R15 R2 R3 RU RS R7 R8 TEXT TOTLIBS
TXLIBSV TXTDIRC TXTLIBS

DMSGND ALDRTBLS ASTATE DIRNAME FILE FSTID FSTDATEW FSTSECT NUCON NUM RO R1 R11 R12
R14 R15 R2 R3 R4 R5 R6 R9 STATEFST TBENT TEXT

DMSGRN BLANKS ERROR EXECRUN FFS FSCBFM FSCBFN FSCBFT INPUT OUTPUT PARMLIST PROCERR RUN RO

@ouailajay SS0I1) T2qRT-03-2[NPOKR

I02ITQ SHD

saT10

LLL-T

MODULE

DMSHDI

DMSHDS

DMSIFC

DMSINA

DMSINI

DMSINM

DMSINS

DMSINT

EXTERNAL REFERENCES (LABELS AND

R1 R10

R8 R9
ADMSFREB AIOSECT
LocC NUCON
R6 R7
ADMSFREB ANUCEND
NUCON RO

R7 R8
AADTLKW ADTM
FILE FSCBBUFF
NUCON NUM

RY R5

TXTDIRC TXTLIBS

AUSABRV BALRSAVE
R3 RU

ADEVTAB BLANKS
DMSINS DMSINSE
RDCONS RDDATA
R5 R6
TYP2305 TYP2311

ASUBSECT BALRSAVE
R4 R5

ABGCOM ACMSCVT

ADTSECT AEXTSECT
BATFLAGS BATFLAG2
CMSSEG CODE203

DCSSAVAL DCSSFLAG
FRERESPG FVS

MODFLGS MSGFLAGS
R0 R1
R7 R9
TIMER TIMINIT

AACTLKP ADMSFREB
ASUBSECT ASUBSTAT
CONWRBUF CONWRCOD
DOSSVC ERRET
JNUMB LASTCMND
NOVMREAD NUCON

R11
SAVE

ANUCEND
RO
R8

ASVCSECT
R1
R9

ADTSECT
FSCBD
OLDPSW
R6

TYPE

EDIT
RS

CAVW
DMSITS1
RO
R7
TYP 2314

CURRCPUT
R8

ACMSSEG
ALDRTBLS
BATIPLSS
CONRDCNT
DCSSOVLP
FO
NOVMREAD
R10

SDI SK
TYPE

AEXTSECT
ASVCSECT
CONWRITE
ERRNUM
Loc
OPSECT

R12
START

AUSRILST
R1
R9

BALR
R10
SVCSECT

BUFFER
FSCBFHM
OSSFLAGS
R7

NOABBREV
R6

cc
EXTNPSW
R1
R8
TYP3210

CURRDATE
SUBSECT

ADISK
AOPSECT
BATLOAD
CONRDCOD
DCSSVTLD
GRAFDEV
NUGCON
R11

SILI
VHSIZE

AFTH
ASYSNAMS
DCSSFLAG
EXTPSW
LOCCHNT
OPTFLAGS

MODULES)

R13 R14

TEXT TEXTA
AUSRITBL BALR

R10 R12
VMSIZE

CODE203 DOSFLAGS
R12 R13
VMSIZE

COMPSHT CURRSAVE
FSCBFX FSCBFY
RESET RO

R8 RY

NOSTDSYN NUCON

RrR7 R8

CE CHANO
INSTALID IONPSW
R10 R11

RY SDISK

TYP3330 TYP3340

CURRVIRT NUCON
TIMBUF

ADMSFREB ADTFDA
AOSMODL AREA
BATRUN BGCOM
CONREAD CONSOLE
DDISK DMSDBG
IONPSH IPLADDR

NUM OPSECT
R12 R13
SPECLF SYSLOAD
WAIT YDISK
AFTN AFTSECT

AUSRARER BALR

DCSSJLNS DCSSLDED
EXTSECT FILENAME
MISFLAGS MSGFLAGS
OSRESET OSSFLAGS

R15

CODE203
R13

DOSSVC
R14

DMSREA
FPSTFV
R1
SAVERO

NUHM
R9

CLASDASD
IOOPSW
R12
SEARCH
TYP3350

RO

ADTFFSTF
ASSTAT
CAW
CURRDATE
DMSFRES
IPLPSH
OPTFLAGS
R14
SYSNANME
YYDDD

AFTHP
CHNDLINE
DMSCPF
FILETYPE
NEGITS
PLIST

R2

DOSFLAGS
R4

ERRCODE
R15

DOSFLAGS
FSTIL
R12
SAVER1

OPTFLAGS
TYPE

CLASTERHM
IPLCCH1
R13

SEEK
WAIT

R1

ADTFFSTV
ASTATE
ccC
CVTMDL .
DMSLAD
LOADSTRT
OSMODLD¥W
R15
SYSNAMES

AFVS
CMSSEG
DMSDBG
FINISLST
NCABBREV
PREVCMND

R3

DOSSVC
R15

F256
R2

DOSSAVE
FSTH
R13
SAVER14

RO

CCNSCLE
IPLPSW
R14
SETSEC
WRDATA

R10

ADTFLG1
ASTATEXT
CHANO
CVIMZ00
DMSLOA
Loc
PGUMNESW
R2
SYSNEND

AIOSECT
CMSTIM
DMSLFS
FREELCWE
NOINPCP
QSWITCH

RU

ERRCODE
R2

JFIRST
R3

DOSSVC
FSTS ECT
R14

SAVER1S

R1

CsW
MCKHM
R15
SILI
WRITE

R14

ADTFLG3
ASYSNAMS
CLKVALMD
CVTNUCB
DMSSCNN
LOCCHT
PRFTSYS
R3
SYSREF

AOPSECT
CODE203
DMSSCNN
FSTFINRD
NOIMPEX
REDERRID

R5

F256
R3

JLAST
R4

EDIT
IOBECE
R15
SAVE2

R4

DE
MCKNPSW
R2
SYSADDR
WRITE1

R15

ADTFORCE
ASYSREF
CMNDLINE
CVTOPTA
DTAD
MAINHIGH
PROTFLAG
R4
SYSTEMID

ASCBPTR
CONRDCNT
DMSSTGSB
FVSECT
NOPAGREL
RELPAGES

R6

IONTABL
RU4

JNUMB
RS

EGPR15
LOADLIST
R2

SSAVE

R15

DEVTAB
NOP

R3
SYSTEMID
YDISK

R2

ADTFSORT
AUSRARER
CHUNDLIST
CVTSECT
EXTSECT
MCKM
REGSAV
R5

TEXT

ASUBFST
CONRDCOD
DOSFLAGS
IONTABL
NORDYTIM
RMSGBUF

R7

IOSECT
R5

LoC
R6

ERROR
LocC
R3
TEXT

R2

DMSDBGP
NUCON
R4

TIC
ZEROES

R3

ADTFSTC
BALR
CMSCVT
DATIPCHM:
FREELOW!
MISFLAG!
RGPRS
R6
TIMCHAR

ASUBRET
CONREAD
DOSMODE
IOSECT
NOTYPIN(
RO

9DUd183J89Y SS01) [oqeT-03-oTNDOR

8LL-C

Z emnyToAp--UOT}RUTEISI®(Q WeiHoad pue otboT wse3sks QLE/RKA RAI

MODULE

DMSIOW

DMSITE

DMSITI

DMSITP

DMSITS

DMSLAD

EXTERNAL REFERENCES (LABELS AND

R1
R9
SYSNEND

AEXTSECT
RO
TIMCHAR

ABATABND
BATRUN
DECDEC
FVSECT
NUCON
R13
TAXEFREQ
UFDBUSY

ABNPSW
DMSABW
NUCON

RS
TSOATCNL

ABNERLST
BGCOM
LoC

PIE

R3
SVERO09

ABNPSW
AWAIT
DCSSLDED
EFPRS
JFIRST
MCKHM
OVSECT
R12
SFNUC
SVCSAVE
TSOFLAGS

ADMSTREB
ADTPTR
rR1

R9

R10
SPECLF
TIMCHAR

CSw
R1
TIMER

ABATLINT
BATUSEX
DMSCWR
FO
NUMPNDWR
R14
TAXELNK
WALT

ABNREGS
FVSECT
OLDEST
R6
TSOFLAGS

ABNPSW
CALLEE
LTK
PIK

RY
SYSCOM

ABNREGS
BALR
DCSSVTLD
EGPRS
JLAST
MISFLAGS
OVSON
R13
SFREW
SVCSECT
TYPE

ADTFDA
ADTRES
R 10

SVCSECT

R11
SPIESAY
TIMER

DBGEXINT
R10
TIMINIT

ADMSFREB
BATXCPU
DMSDBG
F2
OSSFLAGS
R15
TAXESTAT
XPSH

ABWSECT
HOLD
Q0DSK1
R7
UFDBUSY

ABNREGS
CODE203
NUCON
PSAVE
R5
TPFUSR

ABWSECT
CALLEE
DEPTH
EGPRO
JNUMB
MODLIST
OVSTAT
R14
SFSYS
SVCSTOP
TYPFLAG

ADTFFSTV
ADTSECT
R12
SVLAD

R12
STAESAV
TIMINIT

DBGFLAGS
R11
WAITSAVE

AEXTSECT
BATXLIHN
DOSFLAGS
Fy
OSWAIT
R2
TBLEND

ADIOSECT
IONTABL
RO

R8
VSTRANGE

ABWSECT
CURRSAVE
NuM
RESET

R6

TYPE

ACMSSEG
CALLER
DMSABNGO
EGPR 11
KEYMAX
NEGITS
PRFPOFF
R15
SFTRN
SYSNAMES
UFDBUSY

ADTFLG1
AFVS
R13
SVLADW

MODULES)

R13 R1U R15
STARS STATEFST SUBACT
TYPE VIPINIT VSAMNFLG1
DEVICE DMSDBG EXTFLAG
R14 R15 R2

ARGS ASVYCSECT BALR
CMSTAXE CODE203 CONHCT
DOSSYC EXSAVE EXSAVE1
F6 IRPUT IONPSH
OVSTAT PENDREAD REALTIMR
R3 R7 R8
TIMNCCW TIMCHAR TIMER
AFVS AIOSECT ATTNHIT
IOOLD I00OPSW IOPSW

R1 R10 R11

RY SECTNUM SEEKADR
WAIT

ADMSFREB AFVS ALTASAVE
DMSABNGO DMSABW DMSERR
OPSW PCPTR PGMNPSW
RO R1 R10

R7 R8 R9

TYPFLAG UFDBUSY VSAMFLG1

ADMSERL ADMSFREB ADMSOVS
CHKWRD1 CHKWRD2 CHSSEG
DMSABW DMSCWT DMSERR
EGPR15 EGPR2 ERRET

KEYP KEYS KXFLAG
NRMRET NRMSAV NRMUS AV

PRFTSYS PRFUSYS PROTFLAG
R2 R3 RU

SSAVE SSAVENXT SSAVEERV
SYSNEND TEMPO2 TEXT
USAVE USAVEPTR USAVESZ
ADTFLG2 ADTFRO ADTFRCS
ASVCSECT BALR CODE203
R14 R15 R2

TYPE

R2
SUBFLAG

EXTSECT
R4

BATCPUC
CSW
EXTFLAG
I0CPSH
RESET
SAVEXT
TIMINIT

BALR14
ICSAVE
R12
SENSB

APGMSECT
DOSFLAGS
PGMOPSW
R11
SCBPTR
VSAMSERV

ADOSDCSS
CCDE
DMSFNC
FLAGS
KXWANT
NUCON
RGPRS
RS
SSAVESZ
TPFERT
USERKEY

ADTFRW
FVSECT
R3

R3
SUBREJ

TONPSW
R5

SATCPUL
OBGEXEC
BXTOPSW
JR1

20

5CAW
‘TRAP

ZHMSTAXE
[OSECT
’13
'CAXEALDR

APPSAVE
DOSMCLE
PGMS ECT
rR12
3SAVE

AERR
CODE203
DMSFNC3
FVSECT
KXWSVC
NUN
RGPR11
R6
START
TPFNS

ADTFVS
IADT
RU

RU
SUBSECT

IONTAEL
R6

BATFLAGS
DBGEX INT
EXTPSW
LASTUSER
R1

SILI
TSOATCNL

CsSW
KXFLAG
R14
TAXEFREQ

ASYSCOM
DOSSVC
PIBADR
R13
SVEARA

AFVS
CURRALOC
DMSMOD
FO
LASTALOC
OFF

RO

R7
STRTADDR
TPFRO1

ADTHBCT
LoC
R5

R5
SVCSECT

IOOPSW
R7

BATFLAG2
DBGFLAGS
EXTRET
LINE

R10
STIMEXIT
TSOFLAGS

DEVICE
KXWANT
R15
TAXEIOL

ASYSREF
FVSECT
PIBPT
R4
SVEPSW

AOSMODL
CURRSAVE
DOSFLAGS
F6
LASTTMOD
OLDPSW
R1

RS

SVCAB
TPFSVO

ADTLEFT
NUCON
R6

R6
SWTCHSAY

NUCON
R8

BATLOAD
DBGOUT
EXTSECT
LoC

R11
SVCSECT
TYPE

DIOSECT
MISFLAGS
R3
TAXELNK

AUPIE
IJBABTAB
PIBSAVE
R15
SVEPSW2

ASVCSECT
DCSSAVAL
DOSSYC
GPRLOG
LENOVS
ON

R10

R9
SVCOPSW
TPFUSR

ADTHM
REGSAVO
R7

R7
SYSNAMES

REALTIMR
R9

BATLSECT
DBGSECT
FVsS
MYCNT1
R12
TAXEADDR
TYPLIST

DMSABNGO
NEXTO

RY
TAXESTAT

BALR
INTINFO
PICADDR
R2
SVEROO

ASYSNANMS
DCSSFLAG
DUMCOM
ITSBIT
LOC
OVSAFT
R11
SFLAG
SVCOUNT
TSOATCNL

ADTPSTM
RO
R8

ooU918J2Y SS0I) [2qeT-03-STNPON

309ITA SHO

S8TIO

6LL-C

MODULE EXTERNAL REFERENCES (LABELS AND MODULES)

DMSLAF ADMSFREB ADTFLG1 ADTFRW ADTM ADTMX ADTSECT AFTADT AFTFB AFTFLG AFTFSF AFTFST AFTLD AFTM
AFTN AFTPFST AFTPTR AFTSECT AFTT AFTUSED BALR CCDE203 TFSTL FSTSECT LOC NUCOR RO
R1 R11 R12 R13 R14 R15 R2 R3 R4 RS TYPE

DMSLBM AADTLKP AADTLKW ADTFLG?1 ADTFRO ADTFRW ADTH ADTSECT BUFFER DOUELE ERRCODE ERROR FILE FLAGS
FREELOWE FSTFV FSTIC FSTIL FSTH FSTSECT INSIZE MISFLAGS NUCCN NUM PLIST PREVIOUS RELPAGES
RESET RO R1 R10 R11 R14 R15 R2 R3 RY R5 R6 R7
R8 R9 TEXT TEXTA VIRTUAL

DMSLBT AADTLKP AADTLKW ADTFLG1 ADTFRO ADTFRW ADTSECT ARDBUF AWRBUF BELANKS BUFFER DOUBLE ENDFREE FILE
FINIS FLAGS FMODE FSIZE MISFLAGS NOLIBE NUCON NUM RALT RELPAGES RESET RITEM RO
R1 R 10 R11 R12 R13 R14 R15 R2 R3 RU4 R5 R6 R7
R8 R9 SAVE TEXT TEXTA TYPLIN

DMSLDR ACMSRET ADMSFREB AFINIS ALDRTBLS AOSMODL APRILB APSY ARDBUF ASCARN ASTATE AUSRAREA BALR BATFLAGS
BATLOAD BLANKS BRAD CALLEE CLOSELIB CHMD CHMNLLIST CODE203 COMMONEX CRDPTR CURRSAVE C12 c7
c9 DMSLGTA DMSLGTB DMSLIB DMSLIOQ DMSLSBA DMSLSBB DMSLSBC DMSLSBD DMSLSY DMSSTGSB DOSCOMP DOSFLAGS
DOSMODE DOSRC DOSSVC DYLD DYNAEND EGPR1 ENDCDADR ENTADR ENTNAME ESDIST ESIDTB FDISK FINIS
FLAGS FLAG1 FLAG2 FLAG3 FREELOWE FRSTSDID FSTXTADR FTYPE GPRSAV LDRADDR LIRFLAGS LDRRTCD LDRST
LocC LOCCNT LoCCT LUNDEF MAINHIGH MEMBOUND MODFLGS NEED NOAUTO NODUP NOINV NOLIBE NOREP
NOSLCADR NUCON NUM NUMBYTE NXTSYM OSRESET OSSFLAGS OUTBUF OUTPUT PARMLIST PLISTSAV PREXIST PRFTSYS
PRFUSYS PRHOLD PROTFLAG PRVCNT PsSw READBUF REFCMD REFLG1 REFLG2 REFLIB REFUND REG13SAV RESET
RETREG RLDCONST RO R1 R10 R11 R12 R13 R14 R15 R2 R3 R4
RS R6 R7 RS RY SAV67 SPEC SSAVE START STRTADDR SYSLOAD SYSUT1 TBENRT
TBLCT TBLREF TEMPST TEXT TMPLOC TPF USR TXTDIRC TYPFLAG UNRES USERKEY VMSIZE

DMSLDS ADMSROS ADTCYL ADTFLG1 ADTFLG2 ADTFRO ADTFROS ADTFRW ADTID ADTHM ADTSECT CC CONCNT CSW
DOSFLAGS DOSSVC FCBIOSW2 FCBMEMBR FCBMVPDS FCBOSDSN FCBSECT FHMODE HALF NUCON NUM oN OSADTDSK
OSADTVTA OSADTVTB PO POU RESET RO R1 R10 R11 R12 R13 R14 R15
R2 R3 RYU RS R6 R7 R8 R9 TEXT VCADTLKP VCADTWNXT

DMSLFS ADMSFREB ADMSROS ADTCHBAR ADTFDA ADTFFSTV ADTFLG1 ADTFLG2 ADTFLG3 ADTFRO ADTFROS ADTERW ADTFSORT ADTFTYP
ADTHBCT ADTLFST ADTLHBA ADTHM ADTMX ADTPSTM ADTRES ADTSECT AFVS ASVCSECT BALR CODE203 DISK$SEG
DMSLAD DMSLADN DMSSTTR FVSECT NUCON REGSAVO RO R1 R10 R11 R12 R13 R14
R15 R2 R3 R4 R5 R6 R7 R8 R9 SVCSECT SVLFS TYPE

DMSLGT ADMSFREB APSV ARDBUF BALR CODE203 DMSLDRD FILE FMODE FNAME FTYPE LDRST LOC NUCON
OUTBUF RADD READBUF RFIX RITEM RLENG RNUM RO R1 R10 R12 R13 R4
R15 R3 RU RS R6 R7 R8 R9 SPEC TEXT TXTDIRC TXTLIBS TYPE

DMSLIB ADMSFREB AFINIS APOINT APSV ASTATE BALR CLOSELIB CODE203 DEC DMSLDRD DYMBRNM FILE FINIS
FLAGS FLAG2 FMODE FNAME FTIYPE LDRST Loc NOAUTO NOLIEE NUCON NUMBYTE OSSFLAGS OUTBUF
RADD READBUF RITEM RLENG RNUM RO R1 R11 R12 R13 R4 R15 RS

R7 SEARCH SETLIB SPEC TBLCT TBLREF TXTDIRC TXTLIBS TYPE

8dus1a3jsy SSO01) I2qeI-03-3TNPON

08L-2Z

Z sEnfopA--UOT3eUTHIS}ag weiboig pue otboT ®we3lsis 0re/WA WET

MODULE

DMSL IO

DMSLKD

DMSLLU

DMSLOA

DMSLSB

DMSLST

DMSLSY

DMSMDP

DMSMOD

DMSMVE

EXTERNAL REFERENCES (LABELS AND MODULES)

AERASE
FNAME
PLISTSAV
TYPEAD

AADTLKW
RO
R9

ADTFLG1
DOSFLAGS
RO

R8

ALDRTBLS
NOREP
SYSREF

ADMSFREB
ENTNAMNE
NOAUTO
R11
START

ADTFDA
DEC
R12
TEXTA

DSYM

ALDRTBLS
TEXT

ACTIVE
AWRBUF
FREELOWE
LOCCNT
RWCNT

R6

AADTLEKP
FCBBLKS2
FCBOP
NUCON
R12

AFINIS
LDRADDR
RO
TYPLIN

ADTH
R1
SIZE

ADTFLG3
DOSMODE
R1

TAPE

AUSRAREA
NUCON
TBENT

ADTRANS
FLAGS
NODUP
R12
STRTADDR

ADTFLG1
FLAG
R13
TYPE

GET1

MDPCALL

ADMSERL
BALR
FRSTLOC
MDPCALL
RO

R7

ADTFLG1
FCBDD
FCBOPCB
NUM

R13

ALIASENT APSV
LDRST LINE1
R1 R10
UNPACK VIRTUAL

ADTSECT CODE
R10 R11
SYSUT1 TEXT

ADTFRW ADTFRWOS
DSKLST ERROR
R10 R11

TEXT VCADTLKP
DMSLDRB FSTXTALR
PRHOLD RO

TEXT TYPE
APSYV AUSRAREA

FLAG1 FLAG2
ROINV NOLIBE
R13 R14

SYSLOAD TMPLOC

ADTFLG2 ADTFRO
FLAGS FMODE
R14 R15
VCADTLKP VCADTNXT
JSYM NUCON

MODFLGS NUCON

ADMSFREB ADTRANS

CODE203 DMSERR
FVSECT FVSFSTAD
MODFLGS MODGNALL
R1 R10

R8 R9

ADTFRO ADTFRW
FCBDEV FCBDSK
FCBOSFST FCBRECFHM
OSFST OSFSTBLK
R14 R15

AWRBUF
NOERASE
R11

FILE
R12

ALTSECT
FINIS
R12

LCRADDR
R1
UNRES

BALR
FREELOWE
NOMAP
R1S5

TYPE

ADTFROS
FNAME
R2

NXTSYM

PLIST

AERASE
DMSSTGSB
FYSFSTICL
MOLGNDOS
R11
SEARCH

ADTSECT
FCBDSMD
PCBSECT
OSFSTLRL
R2

DMSERR
NOMAP
R13

FSTFV
R14

AERASE
LUBPT
R14

LDRFLAGS
R12

BATFLAGS
FRSTSDID
NOREP

R2

ADTFRW
FTYPE
R3

RO

RO

AFINIS
DOSFLAGS
FVSFSTFV
NOERASE
R12
STRTADDR

BATFLAGS
FCBDSNAHN
FCBTAP
OSFSTRFM
R3

DSKAD DSKLIN
NUCOR NOM

R14 R15
FSTIL FSTM

R15 R2
AFINIS ASYSREF
NICLPT NUCON
R15 R2
LOCCHT MAINHIGH
R14 R15
BATLCAD BRAD
FSTXTADR LASTTMOD
NUCON OUTBUF
R3 RY4

ADTID ALTHM
NUCON NUM

RY RS

R1 R14

R1 R14

AFVS ALDRTBLS

DOSMODE DOQSSVC
FVSFSTIC FVSFSTIL
NOMAPFLG NUCON
R13 R14
SUBFLAG SYSTEM

BATMOVE CCNFLAG
FCBINIT FCBIOSW2
FCBTAFID FLAG
OUTPUT PLIST

R4 R5

DYLD
0SSFLAGS
R2

FST3IECT
R3

AWREBUF
PUBALR
R3

ROAITOC
R2

CLEAROP
LDR5T
RESET
RS

ADT3ECT
RET REG
R6

R15

R15

ARDRUF
DSKLIN
F65535
NUM
R15

T BENT

LA
FCBITEN
FSTFV
PS

R6

ERROR
OUTBUF
R3

MISFLAGS
RU

BGCOM
PUBCUU
R4

NOERASE
R6

CODE203
LoC
RETT

R6

AERASE
RO
R7

R2

ARDTK
DSKLOC
LASTLMOD
PRFTSYS
R2

TEXT

DDNAM
FCBLRECL
FSTIL
RESET

R7

FILE
QUTPUT
R4

NUCON
RS

BLANKS
PUBDEVT
RS

NOINV
STRTADDR

DMSLDRC
LocCCT
RO

R7

BRAD
R1
R8

R3

ASTATE
DSKLST
LASTTMOD
PRFUSYS
R3

TEXTA

LOSFLAGS
FCBMMV
FSTSECT
RO

R8

FLAG1
PACK
TEXT

PROCERR
R6

DEVTAB
PUBDSKM
R6

NOLIBE
SUBACT

DMSLDRD
MAINHIGH
R1

R8

COMNAME
R10
R9

R4

ASTATEW
ERROR
LDRFLAGS
PROTFLAG
R4

DOSSVC
FCBMVFIL
IHADEB
RrR1

R9

FLAG2 -
PARMLIST
TYPE

RELPAGES
R7

DEVTYP
PUBPT
R7

NOMAP
SUBFLAG

ENDCDADR
MODFLGS
R10

R9

DATE
R11
SEARCH

TBENT

AUSRAREA
FILE

LOC
REGSAV3
R5

EXSAVE
FCBMVPDS
INPUT
R10

TEXT

@oUsIaJ8Yy SS01) T9qRTI-03-8TNPON

309ITJ SHD

seTi0

18L-¢

MODULE

DMSNCP

DMSNUC

DMSOLD

DMSOPL

DMSOPT

DMSOR1

DMSOR2
DMSOR3

DMSOVR

DMSOVS

EXTERNAL REFERENCES (LABELS AND MODULES)

BYTE
CCPRSTAT
CCPVPAD1
NICDISA
NICTERM
R13
VIRTUAL

ADISK
CONHCT
QODSK1

ADMSFREB
BALR
DMSLIB
FDISK
LDRST
NOSLCADR
READBUF
R11
SAV67

ACTIVE
LUBPT
R8

ABGCOM
R14

ADMSFREB
R2

R1
CCW2

ADMSOVS
OVBPF
OVSHO
R7

ASVCSECT
ON
OVF20S
R13

CCPADDR
CCPRSTEP
CODE
NICEPMD
NUCON
R14

ADTB
DBGOUT
SDISK

ADMSLIO
BATFLAGS
DMSLSBA
FINIS
LocC
NUCON
REFCHMD
R12

SPEC

ADMSFREB
NUCON
R9

BGCOM
R15

BALR
R5

R12
CONSOLE

ASVCSECT
OVF 1F
OVSON

R8

BUFFA
OUTPUT
OVF2ST
R4

CCPARM
CCPRSTYP
DA
NICGRAF
NUM

R15

ADTC
DDISK
SECTNUM

ADTRANS
BATLOAD
DMSLSBB
FLAGS
LOCCNT
NUM
REFLG1
R13
STRTADDR

ASYSREF
NUM
SEEK

DOSFLAGS
R2

CODE203
R6

F7

BUFFER
OVF 1FS
0VSSo

SVCSECT

CALLEE
OVAPF
OVSAFT
R15

CCPCAONE CCPENTRY CCPHBFNO

CCPSIZE
ERROR
NICLBSC
PO

R2

ADTD
DECDEC
SEEKADR

AERASE
BLANKS
DMSLSEC
FLAG1
LocCCT
NUMBYTE
REFLG2
R14
SYSLOAD

BALR
RO
TEXT

DOSMODE
SOB1

INPUT
TEXT

R1

DEC
OVF1GA
OVSTAT
TEXT

CALLER
OVBPF
OVSHO
R3

CCPSTOR
FILE
NICLGRP
QS

R3

ADTE
DMSDBG
SENSB

AFINIS
BRAD
CMSLSBD
FLAG2
LUNDEF
NXISYM
REFLIB
R15
SYSUT1

BGCOM
R1
TIC

JCSW3
TEXT

LoC
TRUN

R12

DMSOVS
OVF1GB
RO
TYPE

CURRSAVE
OVF1F
OVSON

R4

CCPTEP
FILEMODE
NICLINE
RDBUFLYN
RY

ADTF
DMSINALT
SILI

ALDRTBLS
CLOSELIB
DMSLSY
FLAG3
MEMBOUND
OSRESET
REFUND
R2

TRENT

BUFFER
R12
TYPE

JCSHu

NUCON
TYPE

R4
ERROR

OVYF1GS
R1

DEPTH
OVF1FS
0v¥Ss0
R5

CCPHBFSZ
CCPTEEU
FILENAME
NICMLTP
RDBU¥NO
R5

ADTG
DMSINATS
TBLEWD

APRILE
CKD

DYLD
FREELCVWE
MODFLGS
OSSFLAGS
REG135AV
R3

TBLCT

CODE203
R15

NUCORN

NUN
VAR

LENQYS
OVF10N
R12

EFPRS
OVF1GA
OVSTAT
R6

CCEMAXID
CCPTNCP
FREELOWE
NICRCPU
READBUY
R6

ADTS
EDISK
TIMCHAR

APSY
CMNDLIST
DYNAEND
FSTXTADR
NEED
CUTBUF
RESET

RU4
TBLREF

DOSDD
R2

RESET

ON
ZEROES

LoC
OVF1PA
R14

EGPRS
OVF1GB
RFPRS
R7

CCPNAME
CCPTEEP
FSTL
NICRSPL
RO

R8

ADTY
FDISK
YDISK

ARDBUF
CODE203
ENDCIALR
FTYPE
NOAUTO
OUTPUT
RETREG
RS
TEMPST

DOSFIRST
R3

RO

QUTPUT

RUCON
QVF2CM
R15

EGPRO
OVF1GS
RGPRS
R8

CCPPADO
CCPTYPE
FSTFMODE
NICSDLC
R1

R9

ADTZ
GDISK
ZDISK

ASCANN
COMMONEX
ENTADR
GPRS AV
NODUP
PARMLIST
RLDCONST
Rr6
TMPLOC

DOSNEXT
R4

R1

RO

NOoM
OVF2NR
R3

EGPR15
OVF10N
RGPRS
SSAVE

CCPPAD1
CCPTYPE1
INPUT
NICSWCH
R10
SAVE

ARGS
INPUT

ASTATE
CRDPTR
ENTNAME
LDRADDR
NOINV
PLISTSAV
RO

R7
TXTDIRC

DOSSECT
R5
R10

R1

OFF
OVF205S
R4

FLAGS
OVF1PA

START

CCPPSIZE
CCPTYPE2
NICCIBM
NICSWEP
R11

SF

BDISK
LINE

AUSRAREA
DMSLGTA
ESD1ST
LDRFLAGS
NOLIBE
PREXIST
R1

R8

UNRES

DOSSYS
R6

R11

R12

ON
OVEF2WA
R5

NUCON
OVF2CH
R1
SVCOUNT

CCPRESID
CCPVPADO
NICCTLR
NICTELE
R12

TEXT

CDISK
MVCNT1

AWRBUF
DMSLGTB
ESIDTB
LDRRTCD
NOREP
PRVCNT
R10

R9
WORKFILE

LoC
R7

R12

R15

OVAPF
OVSECT
R6

OLDPSW
OVF2NR
R12
SVCSECT

8oUdI9IdY SS0I) [9qeT-03 —-OTRPON

Z8L-T

 SuunyloA--uUoTIRUTEIS}®g Weiboig pue o1hoT We3IsAS OLE/WA WOT

MODULE

DMSPIO

DMSPNT

DHSPRT

DMSPRV

DMSPUN

DMSQRY

DMSRDC

DMSREA

DMSRNE

EXTERNAL REFERERCES (LABELS AND MODULES)

TEXT

ABATABND
cc

R14

WAIT

AACTFREE
R1

ADMSERL
FILEMODE
R13
TYP3203

AERASE
FTYPE
R12

ADMSERL
FILENAME
R 14

ABGCOM
ADTHM
BLANKS
DOSEXTNO
DOSSvVC
FCBDD
MSGPLAGS
PROTFLAG
R5
TXTLIBS

ABATABND
DEVTYPE
R1

SAVE

NUM
SAVERO

AERASE
RO
STRTNO

TEXTA

ABATLINMT
Ccsw
R 15

AACTLKP
R11

ADMSPIOC
FILENAME
R14
TYP3211

AFINIS
INPUT
R14

ADTID
FILETYPE
R15

ADTCYL
ADTHX
CDISK
DOSEXTTB
DOSSYS
FCBDEV
NEGITS
REDERRID
R6
VCADTLKP

AERASE
ERROR
R10
TEXT

RO
SAVER1

AFINIS
R1
TEXT

TPFSVO

ADMSERL
DOSFLAGS
R2

AFTIC
R12

AFINIS
FILETYPE
R15

ASYSREF
LUBPT
R15

ADTSECT
FVSFSTAD
R2

ADTDTA
ADTNUM
CMSSEG
DOSFIRST
DOSTYPE
FCBDSNAM
NOABBREY
RO

R7
VCADTNIT

AFINIS
FILE
R11
TYPRDR

R1
SAVER14

AINCORE
R10
IYPE

TYPE TYPFLAG
BATFLAGS BATLSECT

ERRET ERRMSG
R3 RY

AFTRP AFTSECT

R13 R14
ARDBUF AREA

HEX INSTALID
R2 R3

AWRBUF BGCOM
NUCON PUBADR

R2 R3
AFINIS ARDBUF
LocC NOTIME
R3 RY

ADTFDOS ADTFLG1
ADTSECT AEXTSECT
DEC DECDEC
DOSFLAGS DOSINIT
DOSUCNAM DOSVOLNO
FCBDSTYP FCBFIRST
NOIMPCP NOIMPEX

R1 R10
RS RY
VIRTUAL

ASCANN ASTATEW
FILEBUFF FILEMODE
R14 R1S

R12 R13
SAVER15 SAVER2

ARDBUF AWRBUF
R12 R13
VCADTLKW

VMSIZE

BATNOEX
NUCON
RS

AFTWP
R15

ASTATE
LoC
R4

BUFFER
PUBCUU
SEARCH

ASTATE
NUCON
RS

ADTFLG2
AFVS
DMSDBG
DOSKPART
DOSVOLTB
FCBNUM
NOPAGREL
R11
SEARCH

AWRBUF
FILENAME
R2

R14
TEXT

ERROR
R14

XCOUNT

BATPRIC
NUM
R6

AFVS
R2

BITS
KOCOR
RS

cC
PUBPT
SEEK

BITS
NUM
R6

ADTFLG3
AINTRTBL
DOSBUFSP
DOSLIBL
DOSXXX
PCBSECT
NORDYTINM
R12
SYSCOM

BATDCHES
FMODE
R3

R15

FMODE
R15

XGPRO XGPR1
BATPRTL EATRUN

PWAIT R1
R7 R8

DMSLFS FVSECT

RU RS
ccC CLASURO
RUM RO
R6 R7
CDISK DOSFLAGS

RDCOUNT RDDATA
SENSE T EXT

CLASURO CLOSIO
RO R1
R7 R3

ADTFRO ADTFROS
ALDRTBLS AQUTRTBL
DOSDD DOSDEV
DOSMODE DOSNUM
DTAD DTADT
FCBTAPID FVSECT
NCSTDSYN NJCCHN
R13 R4
SYSLINE S{SNAMES

BATFLAGS EATFLAG2
IOAREA NJCON
RG R5

R2 R3

FNANE F3IZE
R2 R3

XGPR1S

BATXLIM
R10
R9

F65535
R6

CLOSIO
R1
R8

DOSMODE
RESET
TIC

ERRET
R10
R9

ADTFRW
ASYSNANS
DOSDOS
DOSO0sS
DUMHY
INPUT
NUM

R15
SYSNEND

BATRUN
NOM
R6

RY

LoC
RY

BATXPRT
R11
SENCCW

NUCON

ERRET
R10
R9

DSKLST
RO

FILE
R11
STATEFST

ADTFRWOS
ASYSREF
DOSDSNAM
DOSOSDSN
EDIT

LOC
OPTFLAGS
R2

T EXT

BUFFER
READ
R7

RS

NUCON
R5

BUSY CAW

R12 R13

SILI TEXTA
REGSAV3 RO

FILE FILEBUFF
R11 R12
TEXTA TYP1403

ERROR FNAME
R1 R10

FPILEBUFF FILEMODE
R12 R13
TEXTA TYPPUN

ADTFSTC ADTID
AUSABRY BGCOM
DOSDSTYP DOSDUM
DOSPERM DOSSECT
EXTH EXTSECT
MACLIBL MISFLAGS
OUTPUT PRFPOFF
R3 RY

T IMCCW TIMCHAR

CLASURI CLOSIO
RPLIST RO

R8 R9
R6 R7
PACK PLIST
R6 R7

P

@oUaI9JoY SSO0ID [2qRT-03-°TNPOR

3021Td SKHD

satio

£E8L-T

MODULE

DMSRNM

DMSROS

DMSRRYV

DMSSAB

DMSSBD

DMSSBS

DMSSCN

DMSSCR

EXTERNAL REFERENCES (LABELS AND MODULES)

AACTLKP
ATFINIS
FVSERAS1
R10

RO

ADTCYL
CSH
FCBMVYPDS
NUCON
OSFSTEND
OSFSTTRK
R14

TEXT

AERASE
DOSFIRST
OSFST
R14
SENSE

AABNSVC
EGPRS
FCBSECT
R11
SCBPTIR

DA
FCBKEYS
KEYOP
R2

AOPSECT
FCBCATML
FCBTAP
OPSECT
R2

BALRSAVE
R7

BUFFLOC
FV

R12
SCLNO
Y2

ADTCHBA
ATYPSRCH
FVSERAS2
R11
STATEFST

ADTDTA
DOSFIRST
FCBNEXT
OPSECT
OSFSTEXUY
OSFSTTYP
R15

TYPE

AFINIS
DOSFLAGS
OSFSTDSK
R15

TEXT

ACMSSEG
EGPRO
LASTUSER
R12
SCBSAV12

DATAEND
FCBOP
KEYSECT
R3

CHNGBYTE
FCBCOUT
FCBTBSP
OSIOTYPE
R3

CMNDLIST
R8

CHNGFLAG
GIOPLIST
R13

SCRBUFAD

ADTFLG 1
AUPDISK
KXFLAG
R12
TEXT

ADTFDOS
DOSFLAGS
FCBOP
OSADTDSK
OSFSTFLG
OSFSTUMV
R2
TYP3350

AREA
DOSMODE
OSFSTXTIN
R2

TIC

ADMSFREB
EGPR1
LINKLAST
R13
SCBWORK

DECARERA
FCBRECFM
KEYTBLAD
RY

DA
FCBDEV
FCBXTENT
PO

R4

NUCON

DECLTH
HOLDFLAG
R14
SCRFLGS

ADTFRO
ERBIT
KXWANT
R13
UFDBUSY

ADTFLG1
DOSSYC
FCBOSDSN
OSADTIFST
OSFSTFHM
OSFSTXNO
R3

UND

ASTATE
DOSOP
OUTBUF
R3

AOSMODL
EGPR11
LoOC

R14
SETUP

DECKYADR
FCESECT
KEYTBLNO
RS

DECAREA
FCBDSMD
IHADEB
PREVIOUS
RS

RO

DMSGIO
ITEM
R15
SCRFLG2

ADTFRW ADTFTYP ALTHM
ERRCOD1 ERSFLAG FILE
NEWMODE NEWNAME NEWTYFE
R14 R15 R2
VCADTLKP VCFSTLKW

ADTFLG2 ADTFLG3 ADTFORCE
CTIAD FCBBLKSZ FCBDSHMD
FCBOSFST FCBPROC FCBRECFHM
OSADTVTIA OSADTVTB OSFST

OSFSTFVF OSFSTLRL OSFSTLTH

OSFSTXTN PO Ps
R4 R5 R6
VAR VCADTNXT ZEROES

ASYSREF AWRBUF BGCOH

DOSOSFST DOSSECT DSKLST
PUBPT RDCOUNT RDDATA
R4 R5 R6

APGMSECT BALR CARLLEE

EGPR12 EGPR14 EGPR15

NUCON OLDPSW PGMOPSW
R15 R2 R3
SETUP2 SSAVE SSAVEERV
DECLNGTH DECRECPT DECSDECB
FCBXTENT FINIS IHADECB
OPSECT PS RO

R6 R7 R8

DECDCBAD DECIOBPT DECLNGTH

FCBDSNAM FCBINIT FCBITEM
IHADECB IOBBCSW IOBBECBP
PS READ RO

R6 RS TAPEDEV
R1 R12 R14

EDCB EDMSK ERRCR
LINELOC NUM NUMLOC
R2 R3 R4
TABLIN TEXT TRUNCCL

ADTSECT
FSTH
NUCON
R3

ADTFROS
FCBDSNaAM
FCBSECT
OSFSTALT
OSFSTMEN
READBLK
R7

BLANKS
EEROR
RESET
R7

CCDE203
EGPR9
FGHMSECT
RY4
STAEBIT

DECTYPE
IOBIN
R1

RY

DECSDECB
FCBMODE
IOBBFLG
R1
TAPELIST

R15

FLAG
PTR1
R5
TWITCH

AFTADT
FSTN
NUM

RU4

ADTFRWOS
FCEBDSTYP
FILERUFF
OSFSTEBLK
OSFSTMVL
RO

R8

ccC
FNAME
RO
RS

CURRSAVE
ERRCCLE
RESET

R5
STAIEIT

DMSSES
IOBICOFLG
R10

SEBS AV

DECTYPE
FCECE
IOBCSW
R11
TAPEMASK

R2

FLAGLOC
PTR2

R6

TYPE

AFTSECT
FSTSECT
ON
RS

ADTM
FCBFIRST
FILEBYTE
OSFSTCHR
OSFSTNTE
R1

R9

CDISK
FTYPE
R1
R9

DCSS AVAL
FCBLD
RETRYRIT
R6
TPFUSR

DMSSBSRT
KEYCHNG
R11

SKEY

DMSSBL
FCBOS
IOBIN
R12

T APEOPER

R3

FLAG2
RO

R7
TYPSCR

AFVS
FSTT
REGSAV1
R6

ADTSECT
FCBIOSW2
FILENAME
0S FST DBK
OSFSTNXT
R10

SAVEREGS

DOSDD
INPOUT
R10

SAVE1

DCSSFLAG
FCEDEV
RO

R7

TYPE

DUMHMY
KEYCOUT
R12
TBLLNGTH

DMSSEB
FCBPDS
IOBIOFLG
R13

UND

R4

FMODE

R1

R9
UTILFLAG

AKILLEX
FYSECT
RO

R7

BALR
FCBLRECL
FILEREAD
0SFSTDSK
OSFSTRFM
R11

SEEK

DOSDEV
LUBPT
R11
SEARCH

DCSSVTLD
FCBDUM
R1

R8
TYPFLAG

FCBBYTE
KEYLNGTH
R14

VAR

FCBBUFF
FCBREAD
I0OBOUT
R14

VAR

R5

FNAME
R10
SAVCNT
VERCOL1

ASTATEW
FVSERASO
R1

r8

cc
FCBMEMBR
Loc
OSFSTDSN
OSFSTRSH
R12

SKIP

DOSDSK
NUCON
R12
SEEK

DEBDCBAD
FCBFIRST
R10

R9
USAVEPTR

FCBITEM
KEYNAME
R15

FCBBYTE
FCBSECT
NUCON
R15
WRITE

R6

FTYPE
R11
SAVEAR
VERLEN

®0U2193J8Y SS0I) [oqeTI-03-3IRPOH

h8L-2

7 SEnToA--UOTIeRUTHIS}SQ meiboxd pue o1HoT we3IsLsS (OLE/WA REI

MODULE

DMSSCT

DMSSEB

DMSSEG

DMSSET

DMSSLN

DMSSHMN

DMSSOP

EXTERNAL REFERENCES (LABELS AND

ADM3ROS
FCBIOSW
IOBCSW
R12

ADHMSROS
DUMMY
FCBITEN
FCBR13
PRINTLST
R2
TSOATCNL

DMSEDC
DMSSCT

ABATABND
AEXTSECT
AUSRAREA
CODE203
DOSSVC
LOC
NORDYMSG
PROTFLAG
R3
SYSLOAD
TYPE

ADMSFREB
COMPSWT
EGPR13
LINKSTRT
SCBPTR

ABGCOM
MAINHIGH
R1S
VIRTUAL

AACTLKP
AFTFST
CMSCVT
DMSSCTCE
FCBBUFF
FCBDSMD

AOPSECT
FCBITEM
IOBIOFLG
R13

AOPSECT
FCBBUFF
FCBMEMBR
FCBSECT
pPs

R3
TSOFLAGS

DMSEDI
DMSSEB

ABGCOM
AFREETAB
BALR
CPULOG
DOSTRANS
LOCCNT
NORDYTIM
PUBPT

RY
SYSNAMES
UPSI

ADTRANS
CURRSAVE
EGPR 14
LocC
SSAVE

AUSRAREA
MAINLIST
R2

ACBID
AFTIC
CMSNAME
DMSSCTCK
FCBBYTE
FCBDSNAM

CMSOP
FCBOP
I0BOUT
R14

BLK
FCBBYTE
FCBMODE
FCBTAPID
PUNCHLST
R8

TYPE

DMSEXT
DMSSLN

ACMSSEG
AINTRTBL
BATDCMS
CURRDATE
DOSVSAHM
LTK
NOVMREAD
REDERRID
R5
SYSNEND
UPTMID

AFINIS
DMSOLD
EGPR15
LOCCNT
STRTADDR

BALRSAVE
MAINSTRT
R3

ACMSCVT
AFTIN
CM50P
DMSSCTNP
FCBCASE
FCBDSTYP

DA
FCBOS
MACDIRC
R15

CMNDLINE
FCBCASE
FCBMVYFIL
FXD
RDBUFF
SAVER 14
UND

DMSGIO
DMSSMN

ADEVTAB
ALDRTBLS
BATFLAGS
DCSSAVAL
ERROR
LUBPT
NUCKEY
RESET

R6
SYSREF
UPTSWS

AFVS
DMSSHMNSB
ERROR
MODLIST
SUBACT

BGCOM
NUCON
R4

ADMSFREB
AFTPFST
CODE203
DMSSQSGT
FCBCATML
FCBDUM

MODULES)

DECDCBAD
FCBOSFST
MACLIBL
R2

CONRDCNT
FCBCOUT
FCBMVPDS
IHADECB
RDCCHW
SEBSAYV
VAR

DMSLGT
DMsSsoOP

ADMSERL
ALTASAVE
BATFLAG2
DCSSFLAG
EXTSECT
MAINHIGH
NUCON
RGPRS

R7
SYSTEM
USERCODE

ALDRTBLS
DSKLIN
FILE
NUCON
SUBFLAG

COMPSHT
OSSFLAGS
R5

ADTFLG 1
AFISECT
CURRSAVE
DMSSQSPT
FCBCLEAV
FCBFIRST

DECIOBPT
FCBPDS
NuUcon

R3

CONRDCOD
FCBDEV
FCBOP
IOBBCSH
RDCOUNT
TAPE

DMSLIB
DMSSQS

ADMSFREB
AOSMODL
BATNOEX
DCSSJLNS
FRDSECT
MISFLAGS
NUM

RO

RS

TBENT
USERKEY

ALTASENT
DUMCOM
FREELOWE
OLDPSW
SVCSECT

CURRSAVE
OSSMRU
R6

ADTFRO
AFVS
CVTAVIB
DMSSQSUP
FCBCLOSE
FCBFORMN

DECSDECB
FCBR13
NUM

RY

CONREAD
FCBDSHD
FCBOPCB
IOBBECEBC
READLST
TAPEBUFF

DMSLSB
DMSSVN

ADMSFRT
AQUTRTBL
BATRUN
DCSSLDED
FREELCWE
MODFLGS
OFF

R1

R9

TEXT
VCADTLKP

APGMSECT
DYLD
FRSTLCC
OSRESET
SYSTEN

DMSDBG
PPEND
R7

ADTHM
AQPSECT
DA
DOSDIRC
FCBCON
FCBINIT

FCBCATML
FCBSECT
OESECT
RS

CONSOLE
FCBDSTYP
FCBOS
ICEBECBP
RO
TAPECOUT

DMSLSY
DMSSVT

ADOSDCSS
APPSAVE
BGCOM
DCSSVTLD
FREELOW1
MSGFLAGS
ON

R10
SEARCH
TIC
VIRTUAL

ARDBUF
DYLIBO
FVSECT
OSSFLAGS
TBENT

EGPR1
RO
R8

ADTNACW
ACSRET
DCBSAV
DOSLIBL
FCBCOUT
FCBIOSW

FCECLOSE FCBCOUT

FCBT AP FILENAME
PS RESET

R6 R7

CONWR CONWREUF

FCEFORM FCBINIT
FCBPRCC FCEPRPU
IOBIR IOBIOFLG
R1 R11

TAPELEV TAPELIST
DMSCLD DMSSAB
ADTDTR ADTFDOS
ARERA ASTATE
ccC CMSDOS
DEC DMSDBG

FRERESPG JCSW3
NEGITS NOAEBBREV

OPTFLAGS OSMODLDW
rR1 R12
3 EEK SOB1

‘CIMCCW T IMCHAR
TMSIZE

ASTATE ASVCSECT
DYMERNM DYNAEND
F65535 LASTLMOD

OSTEMP PGMSECT
''EXT USAVEPTR
EGPR15 EOCADR
21 R10

]9 SSAVE

ADTSECT AERASE
ASTATE AUPDISK
DEEDCEAL DEBDERID
EGPRO EGPR1
PCBLCECT FCBDD
FCBICSW2 FCBITENM

FCBDEV
IBADEB
RO
R8

CONWRCNT
FCRIO
FCEREAD
NUCON
R13

T AP EM ASK

DMSSBD

ADTFLG2
ASYSCOM
CMSSEG
DOSFLAGS
JCSW4Y
NOINMPCP
PIBPT
R14
STRTADDR
TIMER

AUSRAREA
EGPRS
LASTTMOD
PRFTSYS

FREELOWE
R12
TEXT

AFINIS
BALR
DEBOPATB
EGPR15
FCBDEV
FCBKEYS

FCBDSNAN
IHADECB
RrR1

R9

CONWRCOD
FCBIOSW
FCBRECFNM
OPSECT
R14
TAPEOPER

DMSSBS

ADTHM
ASYSNAMS
CMSVYSAM
COSKPART
JOBDATE
NOIMPEX
PPEND
R15
SYSCODE
TIMINIT

BALR
EGPRO
LDRFLAGS
PRFUSYS

FRERESPG
R13
TIMCHAR

AFTADT
BLK
DEVTYP
EGPR2
FCBDOSL
FCBLRECL

FCBINIT
IOBBFLG
R11

SAVER 14

CONWRITE
FCBIOSW2
FCBRECL
PO

R15
TAPESIZE

DMSSCR

ADTSECT
ASYSREF
CODE
DOSMODE
LOADSTRT
NOPAGREL
PRFPOFF
R2
SYSLINE
TSOBLKS

CODE203
EGPR1
LINKLAST
PROTFLAG

LOCCNT
R14
TOTLIBS

AFTIFLG
CDISK
DMSSBS
FCBBLKS?Z
FCBDSK
FCBMEMBR

®0UD183J9Y¥ SS0ID [9qeT-03-3TNDPON

3D91ITA SKD

S8T 30

S8L-2

MODULE

DMSSQS

DMSSRT

DMSSRV

DMSSSK

DMSSTG

DMSSTT

DMSSVN

DMSSVT

EXTERNAL REFERENCES (LABELS5 AND

FCBMODE
FCBTAP
FVSECT
JFCKEYLE
OSFSTLRL
R12
SAVER15

AOPSECT
FCBIORD
JOBIOFLG
R11

ASCANO
RO

AERASE
DOSMODE
OSFSTXTN
R3

DEC
R6

RBGCOM
BALRSAVE
DYMBRNM
LOCCNT
PGMSECT
RY
USAVEPTR

AACTLKP
AFTRD
FSTFAW
NUCON
R3

ADMSFREB
CONWRCOD
NUCON
R12
TIMER

ADMPEXEC
BALR

FCBMVPDS
FCBTICLOS
FXD
JFCLINCT
OSFSTRFM
R13
SSAVE

BLK
FCBIOSW
IOBOUT
R12

ASTRINIT
R1

AFINIS
DOSOP
OUTBUF
R4

HEX
R8

ADMSFREB
BGCOM
EGPR12
MACDIRC
PICADDR
RS
VIPINIT

ADMSERL
AFTSECT
FSTFB
OSFST
R4

AEXTSECT
CONWRITE
NUMFINRD
R13
TIMINIT

ADMSFREB
CALLER

FCBOP
FCBXTENT
F6
JFCOPTCD
OSIOTYPE
R14
STATERO

DEBTCBAD
FCBIOWR
IOBSTART
R13

DEC
R12

ASTATE
DOSOSFST
PUBPT

RS

NUCON
R9

AEXTSECT
CODE 203
EGPR14
MACLIBL
PPEND

R6
VSAMFLG1

ADTFLG1
AFTWRT
FSTFRO
OSFPSTFLG
R5

AOPSECT
CURRSAVE
NUMPNDHR
R14
TSOATCNL

ADMSROS
CHNGBYTE

FCBOS
FILEBYTE
IHADEB
LASTUSER
PLIST
R15
TAPEDEY

DMSSCTCE
FCBITEM
IOBUPD
R4

DOSFLAGS
R14

ASYSREF
DOSSECT
RDCOUNT
R9

NUM
SYSTEHM

ALDRTBLS
COMPSWT
EGPR15
MAINHIGH
RELPAGES
R7
VSAMRUN

ADTFLG2
AFVS
FSTFROX
OSFSTFM
R6

ATTN
DMSDBG
OPSECT
R15
TSOFLAGS

AERASE
CMNDLINE

MODULES)

FCBOSFST
FILEMODE
IOBDCBPT
Loc

PO

R2
TAPELIST

DMSSCICK
FCBOP
LoC

R15

DOSSVC
R15

AWRBUF
DSKLST
RLDATA
SAVE1

RO
TEXT

ANCHENDA
CORESIZE
ECCADR
MAINLIST
RO

RS
VSAMSERY

ADTFRO
BALR12
FSTFRW
REGSAV3
R9

BALR
EGPRO
OSSFLAGS
R2
WAITEND

AEXTSECT
CMSNAME

FCBPDS FCBPRCC FCBPROCC FCBPRCCO FCBRDR
FILENAME FILEREAD FILETYFE FSTD PSTFLAGS
IOBEND IOBIN IOBIOFLG IOBNXTAD IOBSTART
MACDIRC MACLIEL NUCON NUM OPSECT
PREVIOUS PS Qs RESET RO

R3 R4 RS R6 R7
TAPEMASK TAPEOEER TPFACB TYPE TYPFLAG
DMSSEB FCBBUFF FCBBYTE FCBCLCSE FCBCOUT
FCBPVMB FCBREAD FCBSECT FXD IHADEE
NUCON OPSECT OSIOTYPE PREVICUS PS

R2 R3 R4 RS R6

FINIS FLAG INSIZE MISFLAGS NUCONW

R2 R3 R4 RS R6

BGCONM cc CDISK DOSLT DOSDEV
ERROR FNAME FTYPE INPUT LUBPT
RESET RO R1 R10 R12
SEARCE SEEK SENSE TEXT TIC

R1 R12 R4 R15 R2
VMSIZE

ANCHSECT AKCHSIZ APGMSECT ASTATEXT ASYSCOM
CURRSAVE DMSDBG DMSLGTA DOSFLAGS DOSKPART
EXTSECT FREELCWE FRERESPG F1 IJBBOX
MAINSTRT MISFLAGS NUCORN CLDPSW OPTNBYTE
R1 R10 R12 R13 R14

R9 SCBETR SCBWORK SSAVE STIMEX IT
ADTFROS ADTERW ADTH ADT MX ADTSECT
DMSERR DMSLAD DMSLADW LDMSLFS DMSLFSW
FSTFRWX FSTH FSTSECT FVSECT FVSFSTAD
RO R1 R10 R12 R13
STATEFST STATERO TEXT

CODE203 CONRDBUF CONRDCNT CONRLCOD CONREAD
EGPR1 EGPR15 EXTFLAG EXTSECT FCBSECT
OSWAIT PENDREAD PENDWRIT PS REALT IMR
R3 RU4 R5 R6 R8
AOPSECT APGMSECT AFPIE ARDEUF ASTATE
CMsoP CMSTAXE CODE203 CONRDCNT CONREAD

FCBRECFNM
FSTFMODE
JFCBIND2
OSFST

R1

R8

UND

FCBDEV
IORECB
RO
R7

NUN
SKIP

DOSDSK
NUCON
R4

R3

ATSOCPPL
DOSVSANM
LINKLAST
OSSFLAGS
R1S
sYyscon

AFTADT
FILE
FVSFSTDT
R14

CONSTACK
FSTFINRD
RO

SSAVE

ATFINIS
CONWRBUF

FCBRECL
FSTRWDSK
JFCBMASK
OSFSTBLK
R10

R9
USAVEPTR

FCBDSMD
IOBECBPT
R1

UND

RELPAGES
TEXT

DOSFIRST
OSFST
R15

RU

AUSRAREA
DYLD
LINKSTRT
PCTVSAM
R2
TAXEADDR

AFPTFLG
FSTFAP
FVYSFSTM
R15

CONWRBUF
LOC

R1
STIMEXIT

AUPDISK
CONWRCNT

FCBSECT
FSTXRDSK
JFCDSORG
OSFSTCHR
R11
SAVER1
VAR

FCBINIT
IOBIN
R10

VAR

RESET
VCADTLKW

DOSFLAGS
0SFSTDSK
R2

R5

BALR
DYLIBO
LoC
PDSSECT
R3
TIMCHAR

AFTFST
FSTFAR
FVSFSTN
R2

CONWRCHNT
LSTFINRD
R10
TIMCHAR

AWRBUF
CONWRITE

8oUs 18I0y SSO0ID) [oqeI-03}-oTRPOH

981 -2

¢ SUNTOA--UOT3IRUTWISI®Q WeIbolxd pue o5T1bHoT Wa3ISLS QLE/HA REI

MODULE

DASSYN

DMNSTIO

DMSTMA

DMSTPD

DMSTPE

DMSTQQ

DMSTRK

DMSTYP

EXTERNAL REFERENCES (LABELS AND MODULES)

CORESIZE
DMSLSB
DMSSMN 10
DMS5VN94
EGPR15
FCBDUM
FCBSECT
IHADEB
KEYSECT
OLDPSW
READBLK
R5
TBLLNGTH
WAITLIST

AFINIS
OPTFLAGS
R8

ADEVTAB
R11

BLK
R15
VIRTUAL

BLK
FXD
R5

AACTLKP
ATYPSRCH
FILE
FSTT

NOM

R3
TYP3420

ADTDTA
F4
R6

ADTFLG 1
R13

AFINIS

CURRDATE
DMSSAB
DMSSHNUG
DOSDD
EGPR2
FCBFIRST
FCBTAB
IHADECB
KEYTABLE
OPSECT
RESET

R6
TEMPBYTE

AFST
RO
SYSCOHM

ATABEND
R12

CSw
R2

CSW
NUCON
R6

ADEVTAB
AUPDISK
FINIS
FSTWP
OUTPUT
RY
UFDBUSY

ADTFLG1
F65535
TRKLSAVE

ADTFLG2
R14

ARDBUF

CURRSAVE DATAEND
DMSSBDFR DMSSBS
DMSSHNS5 DMSSOP
DOSDIRC DOSFIRST
EXTSECT FCBBUFF
FCBFORM FCBINIT
FCBTAP FCBTBSP
IHAJFCB IOBIN
KEYTBLAD KEYTBLNO
OSIOTYPE OSRESET
RO R1

R7 R8

TEXTA TEXT3

ARDBUF ASTATE

R1 R11

TEXT TYPE

cc Csw

R13 R14
DMSLIB ERROR

R3 RU

DEC DOSFLAGS
NUM RO

R7 R8

ADTFTYP ADTM
AWRBUF BSR
FLAGS FSTD
FTRDCONV FTRDLDNS
READ RESET

RS R6
VCFSTLKP VCFSTLKW

ADTFLG2 ADTFMFD
NUCON QQTRK
ADTFMFD ADTFRW
R15 R2

ARERA ASTATE

DATE
DMSSCT
DMSSOP19
DOSLIBL
FCBBYTE
FCBIOSW2
FCBXTENT
IOBIOFLG
KEYTYPE
OSSFLAGS
R10

R9
TIMBUF

AUSABRY
R12

DEVADDR
R15

FINIS
RS

DOSSYC
R1
R9

ADTSECT
CL
FSTDBC
FTIRTRANS
RO

R7

WRBIT

ADTFRW
RO
ADTMSK
R3

FILE

DECSDECB
DMSSLN
DMSSOP20
DOSNEXT
FCBCATHML
FCBITEMN
FILEBUFF
JFCBMA SK
LINKSTRT
OSTEMP
R11
SCBPTR
TIMCHAR

BLANKS
R14

DEVMISC
SILI

FXD
R6

ERROR
R10
STOP

AERASE
CLASTABE
FSTFCL
FTR7TRK

ADTQQM
R1

ADTRES
R4

FMODE

DEVTAER
DMSSLN3
DMSSOE22
DOSSECT
FCBCOUT
FCBKEYS
FILEBYTE
JFCLRECL
LocC
PDSBLKSI
R12
SEARCH
TIMER

ERRCODE
R15

DEVNAME
TAPE

PACK
R7

FILE
R11
TEXT

AFINIS
DEC
FSTFV
FPVSECT
R10

R9

WTH

ADTSECT
R11
ADTSECT
RS

FNAME

DEVTYPE
DMSSLN42
DMSSOP23
DUMPLIST
FCEDD
FCEMMV
FILECOUT
KEYCHNG
LOWSAVE
PDSDIR
R13
SSAVE
TYEE

ERROR
R2

DEVSECT

RO
R8

FILEBUFF
R12
VAR

AFTFST
DEVADDR
FSTIC
HEX

R
SAVER1

AQQTRK
R12

ADT1ST
R6

FTYPE

DIAGTIME
DMSSLN6
DMSS(CS
EFPRS
FCBLEV
FCEMVELS
FILEITEM
KEYCCUT
MACLIRC
PDSSECT
R14
STIMEXIT
USAVEPTR

FILE
R3

DEVSIZE

]1
R9

FILEMOLE
14
VIRTUAL

AFTSECT
JEVMISC
FSTIL
[NPOT
12
SAVER14

ATRKLKE
113

R{Y]
n7

HEX

DIRNAME
DMSSLN7
DMSSVN
EGPRO
FCBDOSL
FCBOP

FILEMODE

KEYFORM
MACLIEL
PGMS ECT
RS
T AXEALDR
VAR

LOC
RU

NUCON

R10
SAVER10

FILENAME

R15

AFVS
DEVNAME
FSTHM
KXFLAG
R13
TAPE

ATRKLKPX
R14

R1
RS

TOAREA

CIRPTR
DMSSLNS8
DMSSVN1
EGPR1
FCBDSK
FCBOS
FILENAME
KEYLNGTH
NEWBLKS
PLIST

R2
TAXEDEF
VCADTLKP

NOSTDSYN
R5

PLIST

R11
TAPE

FILETYPE
R2

AKILLEX
DEVSECT
FSTN
KXWANT
R14
TEXT

COUNT
R15

R10
R9

LoOC

DMSDBG
DMSSLN9
DMSSVN2
EGPR13
FCBDSNAM
FCBOSFST
FILETYPE
KEYNAME
NUCORN
PREVIOUS
R3
TAXEEXIT
VHSIZE

NUCON
R6

RO

R12
TEXT

FLAG
R3

ASTATE
DEVSIZE
FSTRP
LOC

R15
TYP2401

DTADT
R2

R11

MSGFLAGS

DMSLGT
DMSSMN
DMSSVNI93
EGPR14
FPCBDSTYP
FCBPDS
FLAG
KEYOP
NUM

PS

RY4
TAXELNK
WAIT

NUM
R7

R1

R14
TYPLIST

FLAG2
RY

ATABEND
ERROR
FSTSECT
NUCON
R2
TYP2420

FVSECT
RS

R12

NOTYPING

8oUs193J8Y SSO0I) [oqeT-03-2TODOR

1I0309ITA SHD

ST

L8L-2

MODULE

DMSUPD

DMSVIB

DMSVIP

DMSVPD

DMSVSR

DM SXCP

DMSZAP

EXTERNAL REFERENCES (LABELS AND MODULES)

NUCON
Rr8

ADTFLG1
BUFFA
FPSTFV
ON

R14
TEXTA

ACMSCYVT
r12
VSAMRUN

ACBAMBL
ACBLIST
ACMSRET
DOSFIRST
EXLEODL
IKQRPL
RPLCHAIN
RPLUPD
R5

TYPE

DEC
R2

AAMSSYS
BGCOM
PPEND
R7

ADIKQLAB
ARDBUF
CCBCSH1
CD
DOSDSK
DOSNEXT
DOSVOLTB
LUBPT
PUBTAPM1
R6

VAR

ADTRANS

FSCBD
LASTLINE
R14

TYPE

NUM RO
R9 START

ADTFRO ADTFRW
CORITEM CTL
FSTIL FSTH

PLIST PTR1
R15 R2
TYPE VCADTLKP

ADMSERL ASYSNAMS
R 14 R15

ACBAMO ACBBFPL
ACBMACRF ACBOCEXT
AOSRET AVIPWORK
DOSFLAGS DOSNEXT
EXLEODP EXLJRN
Loc NRMRET
RPLECBPR RPLEQOFDS
RPLVLERR RO

R6 R7
TYPFLAG VIPINIT

DUMMY EDIT
R3 R4

ABGCOM ACBLIST
CMSAMS CMSCVT
REGSAV RO

R8 SYSNAMES

ADMSERL ADMSFREB
ASTATE ASYSREF
CCBCSW2 CCBDC
CODE203 CONWR
DOSDSMD DOSDSNAM
DOSNUM bosop

DOSWORK DOSYSXXX
NDIKQLAB NICLPT
RO R1

R7 R8

VCADTLKP VCFSTLKP

BLANKS BUFSIZE

FSCBFN FPSCBFT
LASTREC LOC
R15 R2
VIRTUAL

R1 R10
TEXT TYPLIN
ADTHM ADTHX
CUE DATE
FSTSECT ITEM
PTR2 REGSAY
R3 RY
VCADTLKW

AVIPWORK AVSAMSYS
R2 R3

ACBBUFND ACBDDNM
ACBOCTER ACBOEMPT
AVSAMSYS BLANKS

DOSRC LOSSECT
EXLJRNL EXLLEN
NUCON NOM
RPLFDBKC RPLFLAG
R1 R10

R8 RS

VIPSOP VIPTCLOS

ERROR FNAME
R5 R6

ACMSCVTI ADIKQLAB
CMSVSAM CODE203
R1 R12
SYSNEND VIPINIT

ADTDTA ACTFDOS
AWRBUF BALR
CCBEOC CCBEOF
CsW DATACHK
DOSDSTYP DOSDUM
DOSOSDSN DOSOSFST

EGPRS ERRMSG
NOP NUCON
R10 R11

R9 SEEK

CLOSELIB COMNAME

FSCBFV FSTFB
MODDISP NUCON
R3 R4

R14

ADTSECT
DOSFLAGS
LoC
RELPAGES
RS

BALRSAVE
R5

ACBDOSID
ACBOFLGS
CALLEE
DOSSYC
EXLLERF
OLDPSW
RPLKEYL
R11
SAVERO
VIRTUAL

LOC
R7

ADMSFREB
CVTAVIB
R13
VSANFLG1

ADTFLG2
BGCONM
CCBERMAP
DMSCCB
DOSEXTCX
DOSREAD
ERROR
OFF

R12

SILI

CONSOLE

FSTFRW
NUM
R5

R15

RERASE
DOSSVC
MISFLAGS
RESET

R6

CMSVSAN
SYSNAMES

ARCBDTFID
KRCBOKBUF
CURRSAVE
DOSVQLNO
EXLLERL
RESET
RPLNUF
R12
SAVER1
VSAMFLG1

NUM
R9

ADHMSVIB
DOSFLAGS
R14
VSAMRUN

RDTFLG3
CALLER
CCBILEN
DOSBUFF
DOSEXTNO
DOSSAVE
FSTIC

ON

R13

SKIP

DEC

FSTFV
RESET
R6

R2 R3

AEXTEND AFINIS
ERRNSG ERROR
NEWNAME NOERASE

RO Rt
R7 RS
DEC NUCON

SYSNEND TEXT

ACBERFLG ACBEXLST
ACBOPEN ACBPRTCT
DOSDD DOSDEYV
DCSVOLTB DOSYSXXX
EXLLERP EXLSYNF
RETSAV RPLACB
RELOPT1 RPLOPT2
R13 R14
SAVERT4 SAVER2
WAITING

RO R1
TEXT VIRTUAL

ARURTBL ASYSNAMS
DOSMODE DOSSVC
R15 R2
VSAMSERV VSAMSOS

ADTFROS ADTFRW
cc CCBCCW
CCBNOREC CCBSUCLS
DOSBUFSP DOSEYTE
DCSEXTTB DOSFIRST
DCSSECT DOSSENSE

FSTIL FSTSECT
OUTPUT PUBALR
R14 R15

SSAVE SYSTEM

DOSFLAGS DOSSYC

FSTIC FSTIL
RO R1
R7 R8

R4

ARDBUF
FNAME
NOREP
R10

R9

NoM
TYPE

ACBIBUF
ACBST
DOSDSHMD
ERRET
EXLSYNL
RPLAREA
RPLRLEN
R15
SSAVE

R11
WRITE

AVIPWORK
LOC
R3

ADTID
CCBCNT
CCESUNUM
DOSCBID
DOSFLAGS
DOSTAPID
F5
PUBCUU
R2

TAPE

ERROR

FSTM
R10
R9

RS R6

ASTATE AWRBUF

FPTR FREEAD
NUCON NUM
R11 R12

SPARES TEMPSAVE

RESET RO
VIRTUAL VMSIZE

ACEID ACBIDD
ACBSTRNO ACBSTYP
DOSDUY DOSEXTNO
EXENACTB EXENADDR
EXLSYNP IKQACB
RPLARG RPLASY
RPLRTNCD RPLST

R2 R3
SSAVEPRV TEXT

R12 R14

AVSAMSYS AVSRWORK
NUCON PIB2PTR

RY RS

ADTHM ADTSECT

CCBCOM1 CCBCOM2
CCBSYNU CCBUE
DOSCOUT DOSDD

DOSFORM DOSINIT
DOSTYPE DOSUCNAM
F7 INPUT
PUBDEVT PUBDSKM
R3 R4

TEXT TIC

FILE FLAGS

FSTSECT HEX
R11 R12
SAVESIZE TABERD

R7

BLANKS
FREELEN
OFF

R13
TEXT

R1
VSANMFLG1

ACBLEN
ACBUAPTR
DOSEXTTB
EXLEODF
IKQEXLST
RPLBUFL
RPLSTRID
RY
TPFSVO

R15

BALR
PIK
R6

AFINIS
CCBCSW
CCBVER
DOSDEV
DOSITEM
DOSVOLNO
LOC
PUBPT

R5

TYPE

FSCBBUFF

INPUT
R13
TEXT

80UaI83J8y SS01) [oqeT-03} -3TLpOR

2-188 1IBM VM/370 System Logic and Program Determination--vVolume 2

30931Td SWD

sat1i10

68L-Z

LABEL

AABNSVC
AACTFREE
AACTFRET
AACTLKP
AACTNXT
AADTLKP
AADTLKW
AAMSSY®
ABATABND
ABATLINT
ABATPROC
ABGCOM

ABNBIT
ABNERLST
ABNPAS13
ABNPSW
ABNREGS
ABNRR
APORT
ABWSECT
ACALL
ACBAMBL
ACBAMO
ACEBFPL
ACBBUFXND
ACBCAT
ACBDDNY
ACBDOSID
ACBDTFID
ACBERFLG
ACBEXLST
ACBIBUF
ACBID
ACBICD
ACBIN
ACBINFLG
ACBLEN
ACBLIST
ACBMACRF
ACBMAC21
ACBOCEXT
ACBOCTER
ACBOEMPT
ACBOFLGS
ACBOKBUF

COUNT

000001
000004
000005
000013
000001
000004
000012
000004
000012
000004
oooo00u
000033

000004
000010
000001
000030
000013
000002
000001
000008
000004
000001
000005
000001
000€01
000001
000002
000001
000001
000007
000004
000001
000006
000007
000001
000001
000001
000011
000001
000002
000001
000001
000001
000003
000001

REFERENCES
DMSSAB

DMSBRD DMSEWR
DMSBWR DMSERS
DMSBRD DMSBWR
DMSERS

DMSDLK DMSLBM
DMSARX DMSASH
DMSANMS DMSDOS
DMSABN DMSASN
DMSBTEB DMSCIO
DMSARE DMSBTB
DMSALU DMSAMS
DMSSTG DMSVSR
DMSABN DMSETP
DMSABN DMSITP
DMSABN

DMSABN DMSDBG
DMSABN DMSDBG
DMSABN

DMSDLK

DMSABN DMSDBG
DMSFRF

DMSVIP

DMSCLS DMSVIP
DMSVIP

DMSVIP

DMSBOP

DMSBOP DMSVIP
DMSVIP

DMSVIP

DMSBOP DMSVIP
DMSVIP

DMSVIP

DMSSOP DMSVIP
DMSVIP

DMSBOP

DMSBOP

DMSVIP

DMSVIP DMSVSR
DMSYIP

DMSBOP

DMSVIP

DMSVIP

DMSVIP

DMSEOP DMSVIP
DMSVIP

DMSPNT
DMSFNS
DMSCPY

DMSLBT
DMSCPY
DMSVSR
DMSBTB
DMSITE
DMSCPF
DMSASN

DMSDOS

DMSFRE
DMSFRE

DMSFRE

CMSERS

CMSMVE
CMSDLK

CMSCIO
LMSPIO
CMSCRD
CMSEAR

CMSITI
LMSITI

CMSITI

DMSFNS

DMSIFC

DMSESK

DMSEOP

DMSITP

DMSITP

DMSITP

DMSINT

DMSLEN

DMSERR

DMSDOS

DMSITS

DMSITS

DMSITS

DMSPNT

DMSLBT

DESFLD

DMSFET

DMSRNM

CMSLKL

DMSITE

DMSINS

DMSS50P

DMSPIC

DMSOPT

CMSSTT

DMSRDC

CMSQRY

CMSTPE

LMSSET

CMSSET

DMSSMN

92U919}0Y SS01) d|NPON-O3-|aqeT]

06L-2

 9WDTOA--UOTIIRUTEIS}SY Weibfoid pue o1boT Ea3sLS OLe/KA RET

LABEL

ACBOLIGN
ACBOPEX
ACBOUT
ACBPRTCT
ACBST
ACBSTRXO
ACBSTSKP
ACBSTYP
ACBUAPTR
ACMSCVT
ACMSRET
ACMSSEG
ACTIVE
ADEVTAR
ADIKQLAB
ADIOSECT
ADISK
ADMPEXEC
ADMSCRL
ACMSERL

ADMSFREB

ADMSFRT
ALMSLIO
ADHSOVE
ADMSPIOC
ADMSROS
ADMSYIB
ADOSDCSS
ADTADD
ADTB
ADTC
ADTCFST
ADTCHBA
ADTCYL
ADTD
ADTLDTA

ADTE
ADTF
ADTFALNM
ADTFALTY

COUNT

000001
000002
000001
000001
000001
000001
000001
000001
000001
000004
000004
000011
000005
000017
€00006
000005
000006
000001
000002
000053

000195

000002
000020
000008
000001
000016
000001
000002
000009
000001
000001
000006
000017
000008
000001
000027

000001
000001
000003
000004

REFERENCES
DMSEOP

DMSVIP

DMSBOP

DMSVIP

DMSVIP

DMSVIP

DMSBOP

DMSVIP

DMSVIP

DMSINS DMSSOP
DMSDOS DMSLDR
DMSEDX DMSEXC
DMSBRD DMSCIT
DMSANMS DMSASN
DMSDOS DMSVSR
DMSACH DMSDIO
DMSDSK DMSINS
DMSSVT

DMSBTP DMSDBG
DMSAMS DMSBOP
DMSFRE DMSITS
DMSABN DMSACC
DMSCLS DMSCHMP
DMSFCH DMSFET
DMSLAF DMSLDR
DMSSLN DMSSOP
DMSSET

DMSOLD

DMSITS DMSOVR
DMSPRT

DMSACHM DMSALU
DMSVSR

DMSITS DMSSET
DMSACF DMSACHM
DMSNUC

DMSNUC

DMSACF DMSCPY
DMSACF DMSCPY
DMSACHM DMSFOR
DMSKNUC

DMSACC DMSACH
DMSTQQ DMSXCP
DMSNUC

DMsNUC

DMSACF

DMSACF

DMSVIB
DMSVIP
DMSINS
DMSMOD
DMSDBD
DMSXCP
DMSFNS
DMSNUC

DMSBWR
DMSMOD
DMSACF
DMSCRD
DMSFNS
DMSLFS
DMSSTG

DMSLDS

DMSAUD

DMSERS
DMSERS
DMSLLS

DMSARE

CMSVSR

CHSITS
CNSOPL
CMSEDI

DMSITI

LCMSCIO
DMEPIO
LMSACHM
CMSCHR
LMSFOR
DMSLGT
LDMSSVN

CMSLFS

CKESDIO

LFSLFS
TMSQRY

DMSASN

DMSSAB

DMSEDX

DMSCLS
DMSPRT
DMSALU
DMSDIO
DMSHDI
DMSLIB
DMSSVT

DMSSCT

DMSERS

DMSRNM
DMSROS

DMSAUD

DMSSET

DMSFOR

DMSDBG
DMSEUN
DMSAMS
DMSTLE
DMSHDS
DMSLSE
DMSVSR

DMSSEER

DMSENS

DMSBWE

DMSGIO

DMSDOS
DMSSET
DMSAUD
DMSDMP
DMSINS
DESMOD
DMSXCP

DMSSVT

DMSDIO

DMSINT

DMSEDI
LMSSTT
DMSBCF
LMSLCGS
DMSINT
DMSCOLD

CMSFNS

DMSSET

DMSERS
CMSVIE
DMSBRD
DMSEDX
DMSITE
DMSOPL

DMSFOR

CHMSTIO

DMSFCH
CMsSXcCp
CMSBWR
DMSERS
DMSITP
DMSOR1

DCMSQRY

DMSTP®

DMSFET

DMSCAT
DMSEXC
DMSITS
LCMSSAB

DMSROS

DMSF¥NS

DMSCIT
DMSEXT
LMSLAD
DMSSET

DMSSET

90U013J9Y SSOI1) STNPOH-O3-IoqeT

[10398ITA SHD

S9TI

16L-2

LAEEL

ADTFALUF
ADTFDA
ACTFDOS
ADTFFSTF
ADTFFSTIV
ADTFLG1

ALTFLG2
ADTFLG3

ADTFMDRO
ADTFMFD
ADTFMIN
ADTFNOAB
ADTFORCE
ADTFQQF
ADTFRO

ADTFROS

ADTFRW

ADTFRWOS
ADTFSORT
ADTFSTC
ADTFTYP
ADTFUPD
ADTFVS
ADTFXCHN
ADTG
ADTHBCT
ADTID
ADTLAST
ADTLEFT
ADTLFST
ADTLHBA
AL'TM

ADTMFDA
ADTMFDN
ADTMSK
ADTMX

COUNT

000004
000025
000017
000008
000007
000105

000066
000030

000003
000006
000004
000002
000005
000005
000034

000033

000071

000004
000003
000015
000012
000006
000001
000005
000001
000016
000012
000006
000003
000002
000007
000093

000004
000014
000011
000030

REFERENCES

DMSACC
DMSABN
DMSACC
DMSEEN
DMSACC
DMSABN
DMSCPY
DMSLFS
DMSABN
DMSLDS
DMSACC
DCMSQRY
DMSACF
DMSACHM
DMSABN
DMSARE
DMSACC
DMSABN
DMSACC
DMSLBT
DMSABN
DMSLFS
DMSACC
DMSDIO
DMSLST
DMSLLU
DMSACF
DMSACC
DMSACF
DMSAUD
DMSLAD
DMSBWR
DMSNUC
DMSABN
DMSACH
DMSAUD
DMSFOR
DMSERS
DMSACC
DMSABN
DMSDLK
DMSLFS
DMSABN
DMSABN
DHMSACC
DMSACC

DMSACF
DMSACC
DMSASN
DMSACC
DMSINS
DPHSACC
DMSDIO
DMSLLUY
DMSACC
DMSLFS
DMSACF
DMSROS

DMSBOP
DMSACC
DMSAUD
DMSACF
DMSACH
DMSACF
DMSLDS
DMSACC
DMSLST
DMSACF
DMSDLK
DMSMVE
DMSQRY
DMSINS
DMSACF
DMSALU
DMSFNS

DMSFNS

DMSACC
DMSALU
DMSFOR
DMSLAD
DMSLFS
DMSACF
DMSACC
DMSDSL
DMSLKD
DMSACF
DMSACC
DMSACH
DMSACH

DMSFOR
DM5ACF
DM5BOP
DM3ACF
CMSLAD
DM3ACF
DM3DPLK
DMSLST
DMSACE
DM3LST
DM3ACHM
DM5SXCP

DM3EXT
DMS3ALU

DMSACH
DMSALU
DMSACH
DMSLFS
DMSACF
DMSQRY
DM3ACH
DMSDSL
DMSQRY
DMSROS
DMSLFS
DMSALU
DMSDSK

DMSACF
DM5DSK

DMSERS
DMSACF
DMSEDX
DMSLST
DMSAUD
DMSACF
DMSALU
DMSALU

CMSALU
CMSTLE
CMSALU
CMSLFS
CMSACH
LMSDSL
TCMSHVE
CMSACH
D¥SQRY
DMSALU

CMSTQQ

DMSINS
LMSFOR
CMSALU
DMSLST
DMEALU
LMSROS
D¥SALU
LMSERS
CHMSRNM

CMSARE
CMSFNS

DMSACH
CUSFOR

CMSFOR
LMSALU
DMSERS
CMSQRY

CMSACH
DMSAUT
CMSARN

DMSAUD
DMSEXT
DMSFOR

DMSALU
DMSERS
DMSQRY
DMSALU
DMSROS
DMSARE

DMSTRK

DMSROS

DMSARE
DMSMVE
DMSARE
DMSSTT
DMSARE
DMSTOR
DMSSTT

DMSEWR
DMSLFS

DMSAUD
DMSLDS

DMSLFS
DMSAMS
DMSIXC
DMSRNM

DMSALU
DMSFOR
DMSARX

DMSFOR
DMSFOR
DMSINS

DMSARE
DMSFOR
DMSRNE
DMSARE
DMSSET
DMSAUL

DMSASN
DMSQRY
DMSASN
DMSXCE
DMSARN
DMSLAD
DMSTQC

DMSERS
DMSRNV

DMSERS
DMSLST

DMSARE
DMSEXT
DMSROS

DMSAUL
DMSTRK
DMSASE

DMSINS
DH¥SQRY

DMSARN
DNSINS
DF¥SRCS
DMSASN
DNMSSTT
CHSBOP

DMSBOP
DMSRNM
DMSBOP

DMSARX
DMSLAF
DYSTRK

DMSINS

DESTPE

D¥SFOR
DMSPUN

DMSARN
DMSFOR
DYSSET

DMSBWR

CMSLAL
CMSRCS

DESARX
DMSLAL
bMsscp
DMSECE
DMSTCC
CUSEWR

LMSDIC
DMSSCE
DMSDLE

TMSASHM

DMSLEN
DMSUPLD

CMSCRY

DMSLAL
DMSCRY

DMSARX
DMSIX¥C
DMSSCE

DMSLAF

CMSLTFS
CMSSET

DMSASHM
CHSLAF
DMSSTT
DMSDLE
DMSTRK
DMSFNS

CMSERS
DMSSTT
DMSEXT

CMSASN
DMSLBT
DMSXCP

DMSLFS
CMSXCP

DMSASHM
DMSLAL
DMSSTT

CMSLFS

CMSLST
CMSXCP

CMSASN
DMSLEBM
CMSTQQ
CMSEXT
CMSXCP
DMSINS

CMSFOR
CMSUPD
DMSFOR

DMSBOP
DMSLDS

DMSBWR
DHSLAF
LMSTPE

LMSQRY

DMSBOP
CMSLET
DMSTRK
DHMSFOR

LMSLFS

DMSLAD
CMSLAD

DMSBWR
LMSLFS

DMSCMP
DMSLEN
LMSUPD

DMSSTT

DNSBWR
DMSLDS
DMSUPD
DMSLAD

DMSLLU

DMSLBM
DMSLDS

DMSCPY
DMSLLU

DMSCPY
DMSLDS
DMSXCP

DMSUPD

8DU21339Y SS0I1D °TNPOR-03I-Taqe]

Z oWnfoA--UToTieUTmIS}aq Eeiboxg pue o1bo7T waisds OLE/HA WII Z6L-2

LABEL

ADTMXBXL
ADTNACW
ALDTNUM
ADTPQM1
ADTPQM2
ADTPQM3
ADTPSTM
ADTPTR
ADTQQM
ADTRANS
ADTRES
ADTROX
ADTS
ADTSECT

ADTUSED
ADTXNREC
ADTY
ADTZ
ADTIST
AEDLIN
AERASE

AERR
AEXEC
AEXTEND
AEXTSECT
AFINIS

AFLAGLOC
AFREETAB
AFST
AFSTFNRD
AFSTLKP
AFSTLKW
AFTADT
AFTCLA
AFTCLB
AFTCLD
AFTCLDX
AFTCLN
AFTCLX

COUNT

000001
000008
000012
000010
000009
000006
000006
000002
000005
000012
000018
000003
000001
000120

000010

000005
000001
000001
000007
000001
000045

000001
000002
000007
000014
000068

000001
000006
000001
000004
000004
000001
000024
000012
000010
000015
000005
000014
000006

REFERENCES

DMSACH
DMSBWR
DMSACC
DMSACH
DMSACC
DMSABN
DMSLAD
DMSLAD
DMSACHM
DMSLSB
DMSACC
DMSACH
DMSNUC
DMSABN
DMSBOP
DMSEXT
DMSLLU
DMSTRK
DMSACC
DMSFNS
DMSNUC
DMSNUC
DMSACC
DMSEDX
DMSAMS
DMSOLD
DMSITS
DMSEXC
DMSEDI
DMSINS
DMSACC
DMSLDR
DMSSLN
DMSEDX
DMSFRE
DMSSYN
DMSEDI
DMSCPY
DMSCPY
DMSBRD
DMSBRD
DMSBRD
DMSBRD
DMSBWR
DMSERD
DMSBWR

DMSFNS
DMSACH
DMSALU
DMSACF
DMSACC
DMSLFS

DMSALU
DMSMOD
DMSACF
DMSALU

DMSACC
DMSBWR
DMSFNS
DMSLST
DMSUPD
DMSACH

DMSFOR

DMSBOP
DMSPRV

DMSEDX
DMSINT
DMSARE
DMSLIB
DMSSOP

DMSSET

DMSEDX

DMSBWR
DMSBWR
DMSBWR
DMSBYWR
DMSFNS
DMSBWR
DMSFNS

DMSSOP
DMSAUD
DMSAUD
DMSACH
DMSRCHM

DMSFOR
DMSOLD
DMSACM

DMSACF
DMSCMP
DMSFOR
DMSMVE
DMSXCP
DMSFOR

DMSTRK

DMSCLS
DMSREIC

DMSUPD
DMSIOW
DNSCLS
DMSLIO
DMSSRY

DMSERS
DMSFNS
DMSFNRS
DMSFNS

DMSFNS

CMSFOR
CHMSFOR
CMSAUT
DMSALU

CMETQQ
CMSSLN
CMSALU

CHSACH
CMSCPY
LMSIFC
DMSPUN

CMSDLK
DY¥SRNE

CESITE
CHscHP
DMSLLU
DMSSYN

LMSFNS

DMSQRY

DMSFOR
DMSFOR

DMSZAP
DMSBWR

DMSALU
DMSDIC
DMSINS
DMSCRY

DMSDSK
DMSRRYV

DMSCRY
DMSDLK
DMSMOD
DMSTPE

DMSLAF

DMSERS

DMSANS
DMSDLE
DMSLAT
DMSRNE

DMSDSL
DMSSOE

DMSSET
DMSDSK
DMSOLD
DMSTYE

DMSRNF

DMSFNS

DMSARE
DMSDLK
DMSLAF
DMSROS

DMSEDT
DMSSRV

DHSSTG
DMSEDX
DHSPRT
DKSUPD

bussop

DMSFCR

DMSARN
DMSLSK
DMSLEK
DMSSET

DMSENS
CMSSVT

DMSSVN
DMSELX
DMSPRV
CMSXCP

DMSSTT

DMSLAT

DMSARX
DMSDSL
DMSLET
DMSSOP

CMSLIO
CMSTPE

DMSSVT
DMSEXC
DMSPUN

LMSLFS

DMSASH
CMSEDX
CMSLDS
CHMSSTT

CMSLLU
DMSUPD

CMSEXT
DMSRLC

DMSTRK

DMSASN
CMSERS
CMSLFES
CMSTPE

CMSLST

DMSFOR
CMSRNE

DMSAUD
DMSEXC
DMSLKD
TNSTQQ

DMSMOD

DMSGLB
DMSRRYV

8oUdIayey SSOI) STNPON-03I-ToqRT

S®TI03D9ITA SHD

€61-2

LABEL

AFTD
AFTDBA
AFTDBC
AFTDBD
AFTDBF
AFTDBN
AFTFB
AFTFBA
AFTFCL
AFTFCLA
AFTFCLX
AFTFLG
AFTFLG2
AFTFSF

.AFTFST

AFTFULD
AFTFV
AFTIC
AFTID
AFTIL
AFTIN
AFTLD
AFTH
AFTIN
AFINEW
AFTOCLDX
AFTOLDCL
AFTPFST
AFTPTR
AFTRD
AFTRP
AFTSECT
AFTT
AFTUSED
AFTWP
AFTWRT
AFVS

AGETCLK
AINCORE
AINTRTBL
AIOSECT
AKILLEX
ALCHAR1
ALCHAR2

COUNT

000002
000019
000008
000010
000003
000010
000001
000005
000012
000008
000008
000040
000016
000002
000009
000002
000007
000012
000010
000006
000014
000002
000008
000005
000005
000003
000006
000007
000012
000006
000008
000026
000001
000004
000010
000008
000053

000001
000005
000008
000008
000010
000002
000002

REFERERCES

DMSBWR
DMSBRD
DMSBHR
DMSBRD
DMSBWR
DMSBRD
DMSLAF
DMSBRD
DMSBRD
DMSBRD
DMSBWR
DMSBRD
DMSBWR
DMSLAF
DMSBRD
DMSBWR
DMSBRD
DMSBRD
DMSBRD
DMSBRD
DMSERD
DMSLAF
DMSEWR
DMSBWR
DMSBWR
DMSBWR
DMSEWR
DMSERS
DMSLAF
DMSBRD
DMSBRD
DMSBRD
DMSLAF
DMSFNS
DMSBWR
DMSBRD
DMSABN
DMSCWR
DMSLAD
DMSZXT
DMSEDI
DMSABN
DMSABN
DMSACC
DMSEDI
DMSEDI

DMSBWR
DMSERS
DMSBWR

DMSBWR

DMSBWR
DMSBWR
DMSBWR
DMSFNS
DMSBWR
DMSFNS

DMSBWR
DMSFNS
DMSBWR
DMSBWR
DMSBRR
DMSBWR
DMSBWR

DMSFNS
DMSFNS
DMSFNS

DMSFNS

DMSEWR
DMSEWR
DMSBWR

DMSLAF
DMSFNS
DMSBWR
DMSACC
DMSCHWT
DMSLFS

DMSRNE
DMSCRD
DMSCIT
DMSAUD

DMSFNS
DMSFNS

DMSFNS
DMSERS
DMSFNS

DMS3ERS

DMSFNS

DMSCPY

DMSSOP

DMSINT
DMSINT

DMSLAF

DMSFNS
DMSPNT
DMSCPY

DMSINT
DMSFNS
DMSACF
DMEDIO
DMSMOD

DMSQRY
DMSDEG
DMSBWR

DMSFNS

CHMSFNS

EMSLAF

CHMSPNT

CESLAF
CLHMSLAF

LMSSOoP
DNSSTT

CMSERS

DCMSPNT
DMSSTT
DMSACH
DMSDOS
DMSPNT

CMSSET
CMSHDI
LKSTBG

DMSLAF

DMsSsOP

DMsSsop

DMSFNS

DMSALU
DMSDSK
DMSCRY

DMSINT
DMSDIO

DMSSOE

DMSSTT

DMSINT

DHMSAUL
DHMSERS
DUSRNM

DMSITI
DMSDSK

DMSSTT

DESTPE

DHMSLAF

DMSBRD
DMSEXC
DHMSSLN

DMSERS

DMSPENT

LMSETE
DMSENS
DMSSCE

DMSFNS

DMSRNM

DMSBTP
DMSINT
DMSSTT

DMSRNN

DMSSOP

DMSBWR
CMSITI
CMSTPE

CMSTPE

DMSSTT

DMSCIT
DMSITP

DMSTPE

DMSCRD
DMSITS

20ULI9JOY SS0ID OTNPON-03-TeqeT]

f16L-2C

7 SEnTOA--UOT}RUTEIS}®G Weaboiag pue oTboT we3ysks gre/WA WET

LAEEL

ALDRTBLS

ALIASENT
ALINELOC
KLTASAVE
ALTLIST
ALTMODE
ANCHENDA
ANCHENTP
ANCHINST
ANCHLDPT
ANCHLEXNG
ANCHPHLN
ANCHPHNY
ANCHSECT
ANCHSIZ
ANCHSTSW
ANUCEND
ANUMLOC
AOPSECT

AOSMODL
AOSRET
AQUTRTBL
APGMSECT
APIE
APOINT
APPSAVE
APRILB
APSY
AQQTRK
AQQTRKX
ARDEUF

ARDTK
AREA
ARFLG
ARGMAX
ARGS
ARGSAV
ARGSCT
ARURTBL
ASCANN
ASCANO
ASCBPTR
ASSTAT

COUNT

000028

000004
000001
000008
000008
000008
000003
000001
000001
000002
000002
000001
000005
000003
000005
000001
000003
000001
000026

000022
000003
000007
000007
000001
000002
000004
000006
000035
000003
G00006
000059

000011
000029
000002
000001
000046
000008
000016
000006
000005
000002
000002
000002

REFERENCES
DMSBTB DMSFET
DMSSTG

DMSLIO DMSSLN
DMSEDX

DMSAMS DMSDOS
DMSEDI

DMSEDX

DMSDOS DMSSTG
DMSDOS

DMSDOS

DMSDOS

DMSDOS

DMSDOS

DMSDOS

DMSDOS DMSSTG
DMSFCH DMSSTG
DMSDOS

DMSDIO DMSHEDI
DWSEDX

DMSABN DMSARN
DMSSEB DMSSOP
DMSINS DMSITS
DMSDOS DMSSOP
DMSABN DMSCHR
DMSITP DMSSAB
DMSSVT

DMSEXT DMSLIB
DMSAMS DMSDOS
DMSLDR DMSOLD
DMSLDR DMSLGT
DMSBWR DMSTQQ
DMSBWR DMSERS
DUSCHMP DMSDLK
DMSPERT DMSPUN
DMSACF DMSACH
DMSCHP DMSEDI
DMSDOS

DMSDBG

DMSDBD DMSDBG
DMSLBG

DMSDEG

DMSLOS DMSVSR
DMSAMS DMSBTE
DMSEXT DMSSRT
DMSINT

DMSFRE DMSINS

DMSGND

DMSITP

DMSHDS

DMSCRD
DMSSQOS
DMSLDR
DMSVIP
DMSQRY
DMSSLN

DMSITP
DMSLIE
DMSFNS
DMSDSK
DMSRNE

DMSERD
DMSINS

DMSITE

DMSLDR

CMSINS

CMSSET

C¥SCHR
DMSSVRN
D¥MSSAR
[MSSET
CMSSTG
CMSSET
CHMSLIC
CHSEDI
DMSSLN

CMSBWR
CMSPRT

L¥sSNUC

CMSOLD

DMSLDR

DMSCWT
DMSSVT
DMSSET

DMSSVT

DMSLSB

DMSEDX
DMSEVT
DMSERS
DMSRRV

DMSRDC

DMSLCA

DMSDEG

DMSOLT

DMSEXT
DMSSYN
DMSFNS
DMSSFT

DMSMDP

DMSEXC

DMSGLE
DMSTYP
DMSFOR
DFSTYP

CMSMCT DMSOLT CHMSQRY CMSSET
CMSEXT DMSINS DHMSINT CMSSBS
DMSLET DMSLDR DMSLGT CMSMOD
DMSUPL CMSXCE

DMSMCL

DMSSLN

DMSSCT

DMSOLD

@oU®I8JoY¥ SSCIJ STNPON-03I-TaqRT

[10309ITd SHD

S9T1

s6L-2

LABEL

ASTATE

ASTATEW
ASTATEXT
ASTRINIT
ASUBFST
ASUBRET
ASUBSECT
ASUBSTAT
ASVCSECT
ASYSCOM
ASYSNANMS

ASYSRET

ATABEND
ATFINIS
ATRKLKP
ATRKLKPX
ATSOCPPL
ATTN
ATTNHIT
ATTNLEN
ATYPSRCH
AUPDISK
AUPIE
AUSABRYV
AUSERRST
AUSRAREA

AUSRILST
AUSRITBL
AUTOCNT
AUTOCURR
AUTOREG
AVIPWORK
AVSAMSYS
AVSREOJ
AVSRWORK
AWAIT
AWRBUF

AWRTK
BALR

COUNT

000041

000007
000002
000002
000003
00000z
000006
000003
000028
000011
000025

000027

000005
000006
000003
000012
000001
000016
000004
000007
000005
000016
000002
000004
000003
000039

000008
000007
000005
000003
000002
000009
000007
000001
000005
000001
000036

000005
000239

REFERENCES
DMSAMS DMSBOP
DMSINS DMSLDR
DMSSVT DMSSYN
DMSAMS DMSEDX
DMSINS DMSSTG
DMSARN DMSSRT
DMSABN DMSINT
DMSINT

DMSABN DMSINM
DMSABN DMSINT
DMSCIT DMSFRE
DMSBAB DMSEOP
DMSAMS DMSBOP
DMSVSR

DMSASN DMSBOF
DMSQRY DMSRRY
DMSAMS DMSTIO
DMSBWR DMSERS
DMSAUD DMSEWR
DMSAUD DMSBWR
DMSSTG

DMSABN DMSCIT
DMSCIT DMSITI
DMSEDI

DMSACF DMSDSK
DMSARE DMSBWR
DMSITP

DMSABN DMSINA
DMSERR

DMSABN DMSBRD
DMSOLD DMSSET
DMSAEN DMSHDI
DMSABN DMSHDI
DMSEDI

DMSEDI

DMSEDI

DMSYIB DMSVIP
DMSEOP DMSCLS
DMSDOS

DMSCLS DMSVSR
DMSITS

DMSDLK DMSDSK
DMSSRV DMSSVT
DMSAUD DMSBWR
DMSABN DMSACC
DMSCLS DMsSCHMpP

DMSDLK
DMSLIB
DHSTEE
DMSERS

DMSINT

DMSHDS
DMSDOS
DMSBTP

DHMSCLS
DMSSET
DMSTPE
DMSRNM
DMSTOQ
DMSERS

DMSCRD

DMSTFNS
DMSDSK

DMSQRY

DMSBTB
DMSSLN

DMSVSR
DMSDOS

DMSEDI
DMSTPE
DMSFNS
DMSACF
DMSCRD

CMSDSK
CMSKOD
LMSTYP
LMSMOD

CMSINT
CHSFET
CMSDOS

LMSLLB
DMSSRV

DMSSVT
LMSFNS
CHSEDI
CMSRNM
LMSERS
LHSSYN

CMEFCH
DMSSHN

LMSVIB

CHSLBT
LMSUPTD
DMSFOR
LMSACH
LMSCWR

DMSDSL
DMSOLD
DMSUPD
DMSRDC

DMSITE
DMSITP
DMSEDX

DMSDMP
DMSXCP

DMSTQQ

DMSFNC

DHMSTPE
DMSFNS

DMSFET
DMSSTG

DMSVIP

DMSLIO
DMSXCP

DMSALU
DMSDIO

DHSEDI
DMSPRI
DMSXCE
DMSRNY

DMSITS
DMSSET
DMSEXC

DMSDGS

DMSSVR

DMSFOR

DMSFRE

DMSVSR

DMSLLU

DMSAMS
DMSDLE

DMSEDX
DMSPUN

DMSLAD
DMSSTG
DMSINS

DMSFCH

DHMSRNM

DMSINS

DHMSMOD

DHSAUD
DMSDUP

DMSEXT
DMSRRVY

DMSLFsS
DMSINT

DMSINS

DMSSOF

DMSINT

DMSCLD

DMSEQP
DMSDCS

DMS¥CH
DMSSET

DMSOVR
DUSITS

DMSITP

DMSSVT

CMSLDR

PHSPRV

DMSBRD
CMSEDX

DMSFLT
DMSSLN

DMSOVS
CMSQRY

CMSLLU

CHSTPE

CMSLOA

DHMSREC

CMSBWR
LMSERS

DMSGLB
DMSSOP

DMSSLN
CMSSET

CMSOPL

LCMSLSB

DESRNE

DMSCAT
DMSEXC

DMSGNT
DMSSRV

CMSVIB

DMSPRV

DMSMOD

DMSRRYV

DMSCIT
DMSEXT

9oUd19J2Y SS0ID °THPOH-03I-T2qeT]

96t -2

7 SWRTOA--UOT3IRUTEISISQ meaboid pue otboT we3Isks 0LE/WA WAI

LABEL

BEALRSAVE
BALR12
BALR14
BALRY
BATCPEX
EATCPUC
BEATCPUL
EATLCHMS
BATFLAGS

EATFLAG2
EATIPLSS
EATLOAD
EATLSECT
EATMOVE
BATNOEX
BATPRTC
EATPRTL
EATPUNC
EATPUNL
BEATRERR
BATRUN

EATSTOP
EATSYSAB
BATTERM
EATUSEX
BEATXCPU
EATXLINM
BATXPRT
FATXPUN
EDISK
EEGAT
BGCOM

EITS
BELANKS

FLANK1
BLANK2
ELANK3
BLK

COUNT

000027
000002
000002
000001
000006
000002
000001
000009
000065

000020
000001
000016
000003
000007
000010
000002
000001
000002
000001
000C03
000026

000002
000004
000005
000006
000002
000005
000002
0000601
000001
000003
000051

000009
000059

000001
000002
000001
000015

REFERENCES
DMSFCH DMSFET
DMSLAD DMSLAF
DMSSAB DMSSET
DMSCPF DMSDBG
DMSSTT

DMSITI

DMSBRD

DMSARE DMSETP
DMSITE

DMSITE

DMSASN DMSBTB
DMSABN DMSARE
DMSFRE DMSINS
DMSABN DMSASN
DMSINS

DMSABN DMSARE
DMsSCIO DMSITE
DMSBTP DMSMVE
DMSBTB DMSBTP
DMSPIO

DMSPIO

DMSCIO

DMSCIO

DMSBTP

DMSARN DMSARE
DMSITE DMSFIO
DMSBTP DMSCIT
DMSABN DMSERR
DMSBTP

DMSARE DMSETB
DMSBTP DMSITE
DMSETP DMSCIO
DMSBTP DMSEIO
DMSCIO

DMSNUC

DMSDBG

DMSAMS DMSASN
DMSINS DMSITP
DMSVSR DMSXCP
DMSTBG DMSPRT
DMSBOP DMSCPY
DMSOLD DMSCRY
DMSEDX

DMSDSYV DMSEDX
DMSEDX

DMSBTP DMSSEER

DMSFNS
DMSLDR
DMSSLN
DMSFNS

DMSCPF

DMSBTP
DMSARN
DMSITE
DMSBTB

DMSBTB
DMSPIO

DMSCIO

DMSARN
DMSRDC

DMSETP

DMSITE

DMSEBAB
DMSLLU

DMSPUN

DMSDED
DMSRRYV

DMSSOP

DNMSFOR
CKSLFS
DMSSOP
DMSINA

CMSDSK
CMSASN
DMSLDR
LMSBTD

LMSCPF

TMSPIO

CMSASN
LCMSSET

LNSCPF

CMSPIO

CMSBOP
DMSOPL

LMSDLK
CMESYIN

LMSsSQsS

DMSFRE
DMSLGT
DMSSTG
DMSINM

DMSFLD
DMSBTB
DMSLSB
DMSCIT
DMSCRD

DMSSET

DMSBTB

DMSITE

DMSCLS
DMSOPT

DMSDSK
DMSUPD

DMSTMA

DMSHDI
DMSLIE
DMSSVN
DMSSCN

DMSRDC
DMSBTE
DMSMVE
DMSDSK

DMSFRE

DMSCIC

DMSDLE
DMSPRV

DMSDSV
DMSVIE

DMSTPD

DMSHDS
DMSLSE
DMSSVT
DMSSMN

DMSSET
DMSCIO
DMESOLD
DMSERR

DMSINS

DMSCPF

DMSDLK
DMSCRY

DMSEXT
CMSZAP

DMSINS
DMSMCD
DMSVSR
THMSSTG

CHMSCPF
CMSEIC
DMSFLL

CMSITE

CMSCRL

DMSCME
DMS 3RV

DMS5RYN

DMSINT
DMSOLD
DMSXCP
CMSVIE

DMSCRL
DMSRDC
DMSINS

DMSLDR

DMSDSK

DMSDOS
DMSSET

DMSINI

CMSITE
LCMSOPL

DMSLSK
CMSSET
DHMSITE

DMSLSE

DMSERR

LMSDSV
CMSSHN

DMSLET

LMSITP
DMSOR1

DMSERR
DMSRDC

DMSOLD

CHMSFLD

DMSFCH
CMSSRV

DMSLDR

DMSITS
DMSROS

DMSFLD

DMSSET

DMSINS

DMSFET
DMSSTG

DMSLLU

aJoUS18I8Y SSO0I) S[NPOR-03 -T3GRT

S8TI03001Td SHD

L61-¢C

LABEL

BLOC
BLOCKLEN
ERAD
BERKPNTBL
BS

BSR
EBUFAD
BUFFA
EUFFER

BUFFLOC
BUFSIZE
BUSOUT
BUSY
EYTE
CALLEE
CALLER
CARDINCR
CARDNO
CASEREAD
CASESW
CAW

CcC

CCBCCW
CCBCNT
CCBCOM1
CCBCOM2
CCBCSW
CCBCSW1
CCBCS¥H2
CCBDC
CCBEOC
CCBEOF
CCBERMAP
CCBILEN
CCBNOREC
CCBSUCLS
CCBSUNUM
CCBSYMU
CCBUE
CCBVER
CCPADDR
CCPARM
CCPCAONE
CCPENTRY

COUNT

000006
000010
000021
00Cc003
000001
000012
000009
000013
000163

000001
000008
000001
000002
000004
000026
000009
000003
000003
000001
000006
000016
000309

000004
000017
000004
000012
000003
000007
000004
000001
000006
000004
000017
000004
000001
000002
000002
000002
000006
000006
000001
000004
000003
000001

REFERENCES

DMSEDI
DMSFRE
DMSLDR
DMSDBG
DMSCPF
DMSBOP
DMSCPY
DMSOVS
DMSBOP
DMSOVR
DMSSCR
DMSEXT
DMSFCH
DMSCIO
DHMSEDI
DMSERR
DMSDOS
DMSEDI
DMSEDT
DHMSEDI
DMSEDI
DMSCIO
DMSARX
DMSRRV
DMSXCP
DMSXCP
DMSXCP
DMSXCP
DMSXCP
DMSXCP
DMSXCP
DMSXCP
DMSXCP
DMSXCP
DMSXCP
DMSXCP
DMSXCP
DMSXCP
DHMSXCP
DMSXCP
DMSXCP
DMSXCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP

DMSEDX

DMSLSB

DMSCLS

DMSUPD
DMSCLS
DMSPRV

DMSZAP

DMSPIO
DMSKNCP
DMSITP
DMSFRE
DMSEDX

DMSEDX
DMSCIT
DMSASH
DMSSET

DMSLST

DMSTPE

DMSDLK
DMSRDC

DMSITS
DMSITS

DMSDBD
DMSBOP
DMSSRY

LMSOLL

L¥SDSK

CMSLDR
LMsSOVs

CMSCBG
DMSFCH
DMSTIO

DMSDSL

DMSOVS
DMSSVT

DMSDIO
DMSFOR
DMSXCP

DMSEDX

DMSSAE
DNSXCE

DMSERE
DMSINI

DMSEXT

DMSVIP

DMSINI
DMSINS

DMSGLE

CMSINS
DMSLLS

CMSIFC

DMSPIO
LMSPIO

CHSLEN

DMSPRT

CMSLEBT

DMSPRV

DMSOPL

DMSROS

20UdI23J9Y SS01) STLPON-D3-TeqeT]

86L-2

7 SENTOA--UOTIRUTEIS}BQ meiboixgd pue oThoT me3ysis QLE/WA WAI

LABEL

CCPHBFNO
CCPHBFSZ
CCPMAXID
CCPNAME
CCPPADO
CCPPAD1
CCPPSIZE
CCPRESID
CCPRSTAT
CCPRSTEP
CCPRSTYP
CCPSIZE
CCPSTOR
CCPTEP
CCPTEPY4
CCPTNCP
CCPTPEP
CCPTYPE
CCPTYPE1
CCPTYPZ2
CCPVPALO
CCPVPAD1
CCWPRINT
CCWX
ccm
CCH1a
CCRW2

CcD

CDISK
CIPMSROS
CE

CHANO
CHGTRUNC
CHKWRD1
CHKWRD2
CHNGBYTE
CHNGCNT
CHNGFLAG
CHNGMSG
CHNGNUM
CL
CLASDASD
CLASTAPE
CLASTERM
CLASURI
CLASURO

COUNT

000003
000003
000001
000001
000003
000003
000003
000006
000006
000003
000009
000001
000001
000001
000001
000001
000003
000007
000002
000001
000001
000001
000017
000002
000006
000004
000003
000002
000006
000006
000004
000002
000002
000002
000002
000010
000003
000021
000003
000005
000003
000002
000002
000002
000002
000004

REFERENCES

DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSDBD
DMSDIO
DMSDIO
DMSDIO
DMSDIO
DMSXCP
DMSNUC
DMSACH
DMSCIT
DMSINI
DMSEDI
DMSITS
DMSITS
DMSSBS
DMSEDI
DMSEDI
DMSEDI
DMSEDI
DMSCPY
DMSASN
DMSASN
DMSEDX
DMSASN
DMSASN

DMSOR3

DMSPRV
DMSALU
DMSINI
DMSINS

DMSSVT

DMSSCR
DMSEDX

DMSFRE
DMSINI
DMSTPE
DMSINI
DMSRDC
DMSPRT

DMSQRY

DMSTPE

DMSPUN

CMSRRV

DMSsSOP

DMSSRV

@oueI9Joy SS01) STNPOR-03 -[3qeR1T

3}092ITQ SHD

seT1i0

661-C

LABEL

CLEAROE
CLKVALND
CLOSELIB
CLOSIO
CMD
CMDBLOK
CMDREJ
CMNDLINE
CMNDLIST
CMODE
CMSAMS
CMSCVT
CMSDOS
CMSNAME
CMSOP
CMSSEG
CMSTAXE
CMSTINM
CMSVSAM

COMMONEX
COMNAME
COMPSWT
CONCCHS
CONCNT
CONDFLG
CONFLAG
CONHCT
CONHXT
CONINBLK
CONINEBUF
CONRDBUF
CONRDCHT
CONRDCND
CONREAD
CONSOLE
CONSTACK
CONWR
CONWRBUF
CONWRCNT
CONWRCOD

COUNT

000004
000005
000016
000003
000006
000002
000001
000013
000025
000019
000005
000003
000002
000002
000016
000018
000007
000007
000011
000014
000210

000006
000015
000016
000008
000003
000011
000002
000004
000002
000004
000005
000001
000007
000007
000009
000020
000008
000005
000005
000004
000008

REFERENCES
DMSLSB

DMSDOS DMSFNS
DMSLDR DMSLIB
DMSPRT DMSPUN
DMSLDR DMSOLD
DMSEDX DMSGIO
DMSFCH

DMSABN DMSARX
DMSCAT DMSCPF
DMSEDI

DMSAMS DMSVSR
DMSINS DMSSOP
DMSSET

DMSsoP DMSSVT
DMSDLB DMSSCT
DMSBTP DMSEDX
DMSCIT DMSITE
DMSINT

DMSBOP DMSDOS
DMSCPY DMSITS
DMSABN DMSACC
DMSCLS DMSCHP
DMSFCH DMSFET
UMSLAD DMSLAF
DMSSET DMSSLN
DMSLDR DMSOLD
DMSAMS DMSBOF
DMSARYN DMSARX
DMSCIT DMSERR
DMSARX DMSASHM
DMSEXT

DMSHMVE

DMSDBD DMSDBG
DMSDBG

DMSCRD

DMSCRD

DMSSVN

DMSABN DMSINS
DMSABN DMSINS
DMSABN DMSDLB
DMSEQP DMSCHR
DMSCIT DMSCHWR
DMSARX DMSASHM
DMSINT DMSSEB
DMSSEB DMSSVN
DMSINT DMSSEB

DMSINS
DMSOLD
DMSREC

DMSASM
DMSINS

DMSVSR

DMSSOP
DMSEXC
DMSITI

DMSSET
DMSLKD
DMSACF
DMSCRD
DMSFNS
DMSLDR
DMSSOP

DMSDLK
DMSASM

DMSLDS

DMSITE

DMSINT
DMSINT
DMSFLD
DMSEDI
DESSVN
DMSDEG
DMSSVN
DMSSVT
DMSSVN

CMSZAP

CMSCPF
CMSLDR

LCMSSVT
CMSINS
LMSSVT

CMSVIB
CESNCP
CMSACH
CMSCHR
CMSFOR
LCMSLFS
LMESTG

THNSDOS
LMSIFC

DESNUC

LMSSEB
CMSSEB
LMSFNC
CMSEDX

CKSSER
DMSSVT

DMSINS
DMSOLD

DMSINT

DMSVSR
DMSSET
DMSALU
DMSTIO
DMSFRE
DMSLGT
DMSSVN

DMSDSV
DMSSLN

DMSSVN
DMSSVN
DMSINS
DMSINI

DMSXCP

DMSINT
DMSSCN

DMSITS

DMSANS
DMSDLE
DMSHDI
DMSLIE
DMSSVI

DMSFCH
DMSSHN

DMSSVT

DMSINT
DMSINS

DMSSERB

DNSQRY

DMSAUD
DiisDMP
DMSHDS
DMSLSE
DMSVSR

DMSFET
DMSSTG

PMSSEB
CMSOR3

DMSSVTY

DMSSET

LCMSECE
LCMSLCS
DMSINS
CMSNMCE
DMSXCP

DMSLST

DMSSVN
DMSSEE

DMSBRT
DMSEDX
DMSINT
CMSOLD

CMSZAP

DMSSVT
DMSZAP

CMSBWR
DMSERS
CMSITE
CYSOPL

DMSCAT
DMSEXC
DMSITP
DMSOR1

DMSCIT
CMSEXT
DMSITS
DMSSAR

20U21I83J9Y SSO0I) STNpoN-O3I-Taqe]

00Z-2

Z SWNTOA--UOT3IBUTLIa}aQ ®eaboig pue otbo1 me3sis QLE/HA REI

LABEL

CONWRITE
CONWRL
CORESIZE
CORITEM
COUNT
CPSTAT
CPULOG
CRBIT
CRDPTR
CSW

CTL

CUE

CURRALOC
CURRCPUT
CURRDATE
CURRIOOP
CURRSAVE

CURRTIME
CURRVIRT
CVTAVIB
CVTMDL
CYTMZ00
CVTNUCB
CVTOPTA
CVTSECT

DA
CACTIVE
CATACHK
CATAEND
DATE
CATIPCMS
CBDLMSG
CBDEXIT
CBGABN
TCBGEXEC
DBGEXINT
CBGFLAGS
CBGNSHR
LBGOUT

COUNT

000005
000001
000009
000007
000080
000001
000005
000002
000006
000055

000002
000003
000013
000001
000006
000003
000061

000001
000002
000002
000001
000001
000001
000001
000001
000002
000001
000001
000002
000001
000021
000010
000002
000015
000016
000007
000003
000003
000005
000005
000008
000040
000001
000034

REFERENCES
DMSINT DMSSEB
DMSDBG

DMSSTG DMSSVT
DMSEDI DMSEDX
DMSDBG DMSDSK
DMSCLS

DMSDBD DMSSET
DMSZDI

DMSLDR DMSOLD
DMSCIO DMSCIT
DMSITI DMSLDS
DMSUPD

DMSUPD

DMSITS

DMSINM

DMSEXT DMSINM
DMSCIT

DMSABN DMSACC
DMSOVS DMSSAB
DMSEXT

DMSINM

DMSSOP DMSVSR
DMSINS

DMSINS

DMSINS

DMSINS

DMSINS

DMSDLK

DMSCWR

DMSLDR

DMSLDR

DMSLDR

DMSDSL DMSMVE
DMSLOS DMSFCH
DMSFCH DMSXCP
DMSSBD DMSSVT
DMSDLK DMSLST
DMSDOS DMSFNS
DMSDBD

DMSDBD

DMSABN DMSDBG
DMSABN DMSCIT
DMSCIT DMSDBG
DMSABN DMSCIT
DMSABN

DMSDBD DMSDBG

DHSSVN

DMSUPD
DMSERI

DMSCRD
DMSPIO

DMSINS

DMSDBG
DMSSLN

DMSKNCP
DMSFET

DMSSVT
DMSINS

DMSDBG
DMSIOW
DMSDED

DMSITE

DMSSVT

DMSTQQ

LMSCHR
CHSROS

CHMSSET

CMSDLB
DMSSHMN

CMESBD

CHSUPD

DMSITE
CMSITE
LCMSLBG

CESNUC

DMSDBG
DMSTIO

DMSSYT

DMSDOS
DMsSsopP

DMSSES

DMSIOW

DMSDIC
DMSTHA

DMSERR
DMSSTG

DMSSCT

DMSITE

DMSDLK
DMSTPD

DMSFLD
DMSSVN

DMSSOP

DMSECH
DMSXCP

DMSFRE
DMSSVT

DMSGIO

DMSIFC
DMSVTIP

DMSINI

DMSITP

CMSIOV

CMSITS

DMSITE

DMSLDR

@0oUB1I8J9Y SSO0ID SINPON-03-T2qeT

-~
4

3O0DITA SH

SeT10

102-¢

LABEL

LBGPGMCK
CLBGRECUR
LBGSAV1
CBGSAV2
LBGSECT
DBGSET
LBGSHR
CBGSWTCH
LCBSAV
DCSSAVAL
LCSSFLAG
LCSSJLNS
CCSSLDED
LCCSSOVLP
ECSSVTLD
LDISK
LDNAM

TE
CEBDCBAD
CEEDEBID
DEBOPATB
CEBTCBAD
LEC

CECARERA
CECCCBAD
CECDEC
TCECIMAL
CECIOBPT
CECKYADR
CECLNGTH
LECLTH
LCECRECPT
LECSDECE
LCECTYPE
DEPTH
TEVADDR
CEVCODE
CEVICE
DEVMISC
CEVNAME
LRVSECT
CEVSIZE
CEVTAB
CEVTYP
LEVTYPE

COUNT

000004
000017
000002
000001
000007
000003
000001
000012
000003
000014
000043
000004
000010
000001
000018
000003
000001
000006
000002
000001
000002
000004
000074

000007
000002
000038
000009
000003
000004
000005
000002
000002
000024
000025
000007
000048
000002
000004
000005
000003
000005
000003
000011
000027
000025

REFERENCES
DMSDBG

DMSDBD DMSTBG
DMSDBG

DMSDBG

DMSDBD DMSDBG
DMSDBG

DMSABN

DMSDBD DMSLCBG
DMsSsoOP

DMSEDX DMSEXC
DMSABN DMSEDX
DMSINT DMSSET
DMSEDX DMSEXC
DMSINS

DMSABN DMSINS
DMSINS DMSNUC
DMSHMVE

DMSCIO DHMSCIT
DMSSAB DMSSOP
DMSSOP

DMSsoP

DMSSQS

DMSBOP DMSDBD
DMSSET DMSSRT
DMSSBD DMSSBS
DMSSBS DMSSCT
DMSDBD DMSDBG
DMSEDI

DMSSBS DMSSCT
DMSSBD

DMSSBD DMSSBS
DMSSCR

DMSSBD

DMSSBD DMSSBS
DMSSBD DMSSES
DMSITS DMSOVs
PMSTIO DMSTPE
DMSBOP DMSCLS
DMSARX DMSASH
DMSTIO DMSTPE
DMSTIO DMSTPE
DMSTIO DMSTPE
DMSTIO DMSTPE
DMSASN DMSDBD
DMSDIO DMSFNS
DMSRDC DMSSVT

DMSITE

DMSINS
DMSEXC

DMSINT

DMSITS

DMSCLS

DMSDBG
DMSSSK

DMSITE

DMSSCT

DMSIOW

DMSELI
DHSLLU

DMSITS
CHSINS

LCMSITS

CMSSAB

DMSINI

CMSDLK
DMSTPD

CMSNUC

DMssvT

CMSITI

CMSEDX
LMssop

DMSSAB
DMSINT

DMSSET

DMSSET

DMSDSK
DMSTPE

DMSCRY

DMSINY

DMSSET

DMSITS DKSSAB CMSSET
DMSCSY DMSEDY DMSELX
DMSVIE DMSVPED DMSZAP
DMSLLU DMSSVT

DMSLIE

DMSLST

DMSOVR

DMSQRY

©0U213J94 SS0I) °TDhPOH-03-ToqeT]

Z sunToA--UOTIRUTMIS}®Q wWeiboxg pue otboy we3sks QLE/WA WEI Z0Z-Z

LABEL

CIAGNUM
DIAGRET
CIAGTIMNE
CIOBIT
LIOCSW
DIOFLAG
CIOFREE
CIOSECT
CIRAAA
CIRC
CIREEE
CIRLL
DIRN
DIRNAME
DIRPPP
DIRPTR
DIRR
CIRRR
DIRTT
DIRTTR
DISK$SEG
DITCNT
DMPTITLE
DMSABNGO
CMSABNRT
CMSABNSYV
CMSABW
CMSARD
LMSASD
DMSBWR
DMSCAT
LMSCCB
CMSCIOSI
DMSCITA
TMSCITB
CMSCITDB
CMSCPF
DMSCRD
DMSCHR
DMSCWT
DMSDBD
LCMSDBG

DMSDBGP
CMSEDC
DMSEDI

COUNT

000001
000003
000001
000003
000001
000009
000003
000007
000001
000017
000001
000004
000006
000039
000003
000007
000001
000001
000005
000002
000008
000005
000003
000005
000001
000001
000011
000001
000001
000002
000004
000002
000002
000001
000002
000003
000003
000005
000005
000006
000001
000014

000001
000001
000001

REFERENCES

DMSDIO
DMSDIO
DMSSVT
DMSDIO
DMSFNS
DMSDIO
DMSDIO
DMSACHM
DMSFCH
DMSDOS
DMSFCH
DMSDOS
DMSDOS
DMSDOS
DMSFCH
DMSSVT
DMSDSL
DMSFCH
DMSDOS
DMSFCH
DMSEBRD
DMSEDI
DMSDBG
DMSFRE
DMSDBG
DMSFNC
DMSABN
DMSARX
DMSASHM
DMSFNC
DNSABN
DMSXCP
DMSFNC
DMSCWR
DMSCRD
DMSABN
DMSFNC
DMSABY
DMSDBG
DMSABN
DMSDBG
DMSABN
DMSSVT
DMSINI
DMSSEG
DMSSEG

DMSDIO
DMSFCH
DMSFCH

DMSFCH
DMSDSL

DMSDSL

DMSFNS

DMSITI

DMSDBG

DMSCRD

DMSCWR
DMSFNC
DMSINT
DMSFNC
DMSERR
DMSDBG

DMSFNC

DMSFNS

DMSFET
DMSFCH

DMSFCH

DMSLFS

DMSITP

DMSFRE

DMSFNC

DMSFNC
DMSERR

DMSINS

DMSITI

CESFET

CMSITS

LCMSITI

CMSITE
CMSFNC

LMSINT

DMSGND

DMSITP

DMSITS

DMSIOW

DMSSVT

DMSITS

DMSITE

DMSNUC

DMSCRY

CMSSET

CMSSHN

CMSSTG

DMSSVN

aoud183I2Y SSO0ID BTNPON-03I-TaqeR1T

3093Tq SHD

saTI0

€02-2

LABEL

CMSERR

CMSERT
CMSEXC
DMSEXCAB
DMSEXT
DMSFCH
DMSFET
DMSFNC
DMSFNC3
DMSFREB
CMSFREES
DMSFREEX
DMSFRES
CMSFRETS
CMSFRETX
DMSFRT
DMSGIO
DMSINALT
DMSINA1S
CMSINS
DMSINSE
DMSINTAB
DMSIOWR
PMSITET
DMSITP
CMSITSK
DMSITSR
CMSITSXS
CMSITS1
CMSLAD
CMSLADAD
CMSLADN
CMSLADW
DMSLDRA
CMSLDRB
CMSLDRC
CMSLDRD
CMSLFS
CMSLFSW
CMSLGT
DMSLGTA
CMSLGTB
DMSLIB
CMSLIO
TMSLOA

COUNT

000086

000002
000002
000001
000001
000003
000002
000001
000001
000002
000002
000002
000005
000002
000001
000002
000002
000001
000001
000001
000001
000001
000001
000002
000001
000001
000001
000001
000001
000005
000003
000003
000002
000002
000001
000001
000003
000005
000005
000002
000003
000002
000004
000001
000005

REFERENCES

DMSABN
DMSITS
DMSERR
DMSFNC
DMSABN
DMSSEG
DMSDOS
DMSFNC
DMSITS
DMSITS
DMSFNC
DMSFNC
DMSFNC
DMSABN
DMSFNC
DMSFNC
DMSFRE
DMSSCR
DMSNUC
DMSNUC
DMSINI
DMSINI
DMSABN
DKSDRG
DMSFNC
DMSDBG
DMSFNC
DMSABN
DMSFNC
DMSINI
DMSBWR
DMSABN
DMSABN
DMSERS
DMSFNC
DMSLOA
DMSLSB
DMSLGT
DMSBRD
DMSEWR
DMSSEG
DMSLDR
DMSLDR
DMSLDR
DMSLDR
DMSFNC

DMSBWR
DMSLIO

DMSFNC

DMSSEG

DMSERS
DMSFNC
DMSLFS
DMSSTT

DMSLIB
DMSEXC
DMSERS
DMSSVT
DMSOLD
DMSOLD
DMSOLD

DMSINS

DMSCIT
DMSMOD

DMSINS

DMSINS

DMSLSB
DMSINT
DMSFNS
DMSSTG

DMSSEG

DMSCRD
DMSSTT

CMSLFS

DMSPNT
CHSSTY

CHSTHMRA

DMSCWR

DMSSTT

DMSSTT

DMSDBG

DMSERS

DMSFET

DMSFNC

DMSFNS

DMSFRE

DMSITP

@duUaI2Jay SSO0I) STNPOH-O3I-Toqel

h0Z-¢

Z oEnToA--UOT3RUTWIS}I®Q weiboad pue otboT weishks QLE/WA RAT

LABEL

LMSLSB
DMSLSBA
DMSLSB3
LMSLSBC
DMSLSBD
DMSLSY
CLMSMOD
LMSNUCU
CMSOLD
TMSOVS
DMSPIO
CMSPIOCC
DMSPIOSI
LMSREA
CMSSAB
CMSSBD
TMSSBDFR
CMSSBS
CMSSBSRT
DMSSCNN
CMSSCR
IMSSCT
CMSSCTCE
LMSSCTCK
IMSSCTYP
CMSSEB
DMSSLN
LMSSLN3
DMSSLN42
CMSSLNG6
DHMSSLN7
CMSSLNG
DMSSLN9
DMSSHN
CMSSMNSB
CMSSMN10
DKSSMNG
CMSSMNS
TMSSOP
CMSSOP19
DMSSOP20
LMSSOP22
LMSSOP23
LMSSQS
LMSSQSGT
LMSSQSOT

COUNT

000002
000002
000002
000002
000002
000003
000005
000001
000002
000001
000002
000002
000002
000002
000004
000002
000001
000004
000001
000002
000002
000002
000002
000003
000001
000005
000002
000002
000002
000002
000002
000002
000002
000002
000001
000002
000002
000002
000002
000002
00000z
000002
000002
000002
000001
000001

REFERENCES
DMSS®EG DMSSVT
DMSLDR DMSOLD
DMSLDR DMSOLD
DMSLDR DMSOLD
DMSLDR DMSOQOLD
DMSLDR DMSOLD
DMSFNC DMSITS
DMSFRE

DMSSEG DMSSL¥
DMSOVR

DMSFNC

DMSFNC

DMSFNC

DMSIXFC

DMSSEG DMSSVT
DMSSBS DMSSEG
DMSSVT

DMSSBD DMSSEG
DMSSBD

DMSINS DMSINT
DMSEDI DMSSEG
DMSSEG DMSSVT
DMSSOP DMSSQS
DMSSOP DMSSQS
DMSsSoOP

DMSSBS DMSSEG
DMSSEG DMSSVT
DMSSVT

DMSSVT

DMSSVT

DMSSVT

DMSSVT

DMSSVT

DMSSEG DMSSVT
DMSSLN

DMSSVT

DMSSVT

DMSSVT

DMSSEG DMESVT
DMSSVT

DMSSVT

DMSSVT

DMSSVT

DMSSEG DMSSVT
DMSSOP

DMSSOP

DMSSEG

DMSSOP

DMSSQS

CHMSSVT

?ou8I9IOY SSO0ID SINPOH-03-TaqRT

3091Td SHD

seTt10

s0¢-¢

LABEL

DMSSQSUP
CMSSTGAT
CMSSTGCL
DMSSTGSB
CMSSTGSV
LMSSTTR
DMSSVN
LMSSVN1
DMSSVN2
DMSSVNI3
DMSSVNS4
DMSSVT
TMSVSR
DMSXCP
POSBLKS2Z
COSEUFF
DOSBUFSP
TOSEYTE
LOSCBID
DOSCMS
LOSCoMP
roscour
DOSDD

COSDDCAT
COSDEV
DOSDIRC
LOSDOS
DOSDSK
LOSDSMD
COSDSNAM
LOSDSTYP
LOSDUM
COSEND
DOSENSIZ
COSEXT
LOSEXTCT
DOSEXTCX
LCOSEXTNO
COSEXTTB
DOSFIRST

DOSFLAGS

COUNT

0600001
000002
000001
000005
000003
000001
000002
000002
000002
000002
000002
000001
000002
000001
000005
000012
000004
000014
0006002
000002
000005
000002
000027

000006
000018
000005
000004
000006
000027
000009
000004
000013
000001
000006
000004
000002
000004
000013
000009
000027

000161

REFERENCES

DMSSOP
DMSTNC
DMSENC
DMSABN
DMSFNC
DMSLFS
DMSSEG
DMSSVT
CMSSVT
DMSSVT
DMSSVT
DMSSEG
DMSFNC
DMSDOS
DMSEOP
DMSBOP
DMSDLB
DMSXCP
DMSDLB
DMSDLB
DMSFET
DMSXCP
DMSAMS
DMSXCP
DMSDLB
DMSAMS
DMSSOP
DMSDLB
DMSDLB
DMSANS
DMSCLS
DMSCLS
DMSAMS
DMSDLB
DMSDLB
DMSBOP
DMSEOP
DMSXCP
DMSAMS
DMSAMS
DMSABN
DMSSRV
DMSABN
DMSEDI
DMSLDR
DMSSRT

DMSFNC

DMSSVT

DMSXCP
DMSQRY

DMSXCP
DMSLDR

DMSBOP

DMSBOP
DMSSYVT
DMSQRY
DMSDLK
DMSBOP
DMSDLB
DMSDLB
DMSBOP

DMSDLB
DMSDLB
DMSAMS
DMSSVT
DMSALU
DMSEDX
DMSLDS
DMSSRY

DMSINT

DMSXCP

DMSCLS

DMSDLEB

DMSEXT
DMSDLB
DMSQRY
DMSQRY
DMSDLB

DMSQRY
DMSQRY
DMsEoP
DMSVIP
DMSAMS
DMSEXT
DMSLLU
DMSSTG

CMSLDR

LMSDLE

CMSDLK

CMSRRY
DMSVIP
CLMSXCP
LHMSXCP
CNSQRY

LMSVIP
CMSVIP
CMSCLS
DMSXCP
DMSASH
DMSFCH
CMSHMOD
DMSTPD

DMSMOD

DMSDLK

DMSCRY

DMSSRV
DMSXCP

DMSVIP

DMSXCP
DMSXCP
DMSDLB

DMSASN
DMSFET
DMSMVE
DMSUPD

DMSDSV

DMSRRV

DMSXCE

DMSXCE

DMSDLK

DMSBOE
DMSHDI
DMSOPI
DMSVIP

DMSOPL

DMSSRV

DMSDSV

DMSCPY
DMSHDS
DMSPIO
DMSVSR

DMS GRY

DMSVIE

DMS¥CH

DMSDLE
DNMSIEC
DMSPRV
DMSXCE

DMSRRYV

CMSXCE

DMSOPL

CMSDLK
DHMSINT
DMSQRY
DMSZAP

DMSSRY

DMSQRY

CMSLOS
DMSITE
DMSROS

DMSSVT

CMSROS

DMSDSL
DMSITP
DMSRRV

DMSVIP

DMSRRY

DMSDSY
DMSITS
DMSSET

90UdI9FSY SS01) SINPOH-0I-TaqeT]

902-2

Z SERTOA--UOT3IRUTIEIS}SQ weiboad pue otboT weisis QLE/RA WAI

LABEL

TOSFORM
COSINIT
COSITEM
LOSJCAT
DOSKPART
LOSLBSV
DOSLIBL
COSMODE

DOSNEXT
LosNuM
LOSOP
TOosSosS
COSOSDSN
LOSOSFST
LOSPERM
LOSRC
TOSREAD
COSSAVE
DOSSECT

LOSSENSE
LOSSVC

LOSSYS
COSTAPID
TOSTRAKS
LOSTYPE
LOSUCAT
DOSUCNAN
DOSVOLNO
TOSVOLTB
LoSvsad
COSWORK
DOSXXX
TOSYSXXX
COUBLE
LSKAD
LCSKADR
DSKLIN
LSKLOC
DSKLST
LSYM
CTAD
CTACT

COUNT

000009
000027
000008
000006
000006
000004
000007
000041

000011
000014
000037
000006
000008
000009
000004
000015
000010
000009
000029

000008
000057

000004
000002
000013
000011
000006
000011
000015
000009
000010
000006
000002
000015
000017
000002
000006
000066
000010
000021
000002
000034
000018

REFERENCES
DMSBOP DMSXCP
DMSBOP DMSDLB
DMSXCP

DMSDLE

DMSFCH DMSQRY
DMSGLE

DMSFCH DMSGLB
DMSABN DMSALU
DMSLLU DMSMOD
DMSAMS DMSBOP
DMSABN DMSBOP
DMSBOP DMSDLK
DMSDLB DMSCRY
DMSDLB DHSCRY
DMSEOP DMSDLB
DMSDLB DMSQRY
DMSAMS DMSBAB
DMSFCH DMSXCP
DMSIFC DMSXCP
DMSAMS DMSEOP
DMSXCP

DMSXCP

DMSABN DMSAMS
DMSHDI DMSHDS
DMSROS DMSSET
DMSRBOP DMSDLB
DMSXCP

DMSABN DMSBOP
DMSDLB DMSQRY
DMSBOP DMSDLB
DMSBOP DMSDLB
DMSAMS DMSDLB
DMSAMS DMSDLB
DMSASN DMSBOP
DMSXCP

DMSDLB DMSQRY
DMSAMS DMSBOP
DMsBOP DHASCLS
DMSLIO

DMSACF DMSACH
DMSEXT DMSLIO
DMSACF DMSACH
DMSACF DMSACH
DMSLSY

DMSACC DMSACHM
DMSACH DMSASN

DMSQRY

DMSSET

DMSQRY
DMSAMS
DHMSOPT
DMSCLS
DMSDLB
DMSRRV

DMSXCP
DMSDLK

DMSBOP

DMSCLS

DMSASH
DMSIFC
DMSSRT
DMSCPL

DMSCLS
DMSXCP

DMSQRY
DMSQRY
DMSQRY
DMSDOS

DMSCLS
DMSDIO

DMSAUD
DMSMCD
DMSAUD
DMSAUD

DMSAMS
DMSAUD

CMSXCP

DMSSTG

LMSSOP
CMEASN
LMSPRY
CMSDLE
DMSQRY
LMSSRY

CMSRRV

LMSDOS

CMSDLB

CMSCPY
DMSINT
DMSTPD
CMSQRY

LMSDOS

CMSXCP
CMSVIP
CMSVIP
CMSFCH

TMSTLB
CMSDLB

DMSERS
CMSSLN
CMSERS
LCHMSERS

LMSARE
L¥SDIO

DMSSVT
DMSDLE
DMSQRY
DMSOPL
DMSXCP
DMSXCP

DMSSRY

DMSFET

DMSDLK

DMSDLB
DMSITE
DMSUPD

DMSFCH

DMSXCP
DMSXCP
DMSSET

DMSVIP
DMSLBM

DMSFNS
DMSFNS

DMSASN
DMSQRY

DMSDLK
DMSRRY
DMSSVI

DMSXCE

DMSLDR

DMSDSV

DMSDLK
DMSITE
DMSVIE

DMSSET

DMSSTG

DMSXCE
DMSLET

DMSHCL
DMSLLU

DMSDIC
DMSTQC

DHSDSV
DMSSET
DMSVTIP

DMSVIP

DMSOPL

DESDSL
DMSITS
DMSVSR

DMSMOD

DMSFOR

LCMSEXT
DMSSRY
LMSXCE

IMSQRY

LMSEDI
DMSLDR
LMSZaP

DMSERV

DMSINS

DMSFET CMSINT DMSITP
DMSVSR

DMSRRYV DMSSRV CMSSYT
DMSEDX DMSEXT DMSFCH
DMSLDS DMSMOD DMSMVE
DMSRRY CMSSRY

DMSQRY DMSROS

DMSLDR

DMSVIP

DMSFET
DMSQRY

8oUd1I9I9Y SSO0ID S[NpoW-o03}-Taqen

TI0309ITQ SHO

SOTIOo

Loe-2z

LABEL COUNT REFERENCES

DTAS 000003 DMSAMS

CUALNOS 000008 DMSEDC

PUMCOM 000004 DMSITS DMSSLN

DUMMY 000020 DMSASH DMSFLD DMSQRY CMSSBL DMSSEB DMSVPL
COMPLIST 000002 DMSDBG DMSSVT

DYLD 000012 DMSLDR DMSLIO DMSOLD CMSSLN DHMSSTG

CYLIBO 000004 DMSSLN DMSSTG
DYMBRNM 000005 DMSLIB DMSSLN DMSSTG
CYNAEND 000004 DMSLDR DMSOLD DMSSLN

EDCB 000005 DMSEDC DMSEDI DMSEDX DMSGIO DMSSCR

EDCBEND 000001 DMSEDX

EDCBLTH 000002 DMSEDX

EDCT 000026 DMSEDI

EDISK 000002 DMSNUC

EDIT 000066 DMSBTP DMSDLB DMSEDI CMSIFC DMSINA DMSCRY DMSVPD

EDLIN 000013 DMSEDI DMSEDX

EDHSK 000003 DMSSCR

EDRET 000003 DMSEDI DMSEDX

FDHORK 000002 DMSEDX

EFPRS 000008 DMSITS DMSCVS DMSSVT

EGPRS 000019 DMSABN DMSITS DMSOVS DMSSAB DMSSLN

EGPRO 000064 DMSACC DMSDLB DMSDOS CMSFLD DMSITS DM30OVS DKSSAB DMSSLN TMSSOP CMSSVN CMSSVT
EGPR1 000039 DMSDPOS DMSLDR DMSSAB CMSSLN DMSSHMN DMSSOE DKSSVN CMSSVT
EGPR11 000002 DMSITS DMSSAB

EGPR12 000003 DMSSAB DMSSTG

EGPR13 000008 DMSSLN DMSSVT

EGPR14 000007 DMSDOS DMSSAB DMSSLN CMSSTG DMSSVT

EGPR15 000039 DMSDOS DMSIFC DMSITS LESOVS DMSSAR DMSSLN DMSSMN CMSSCP CMSSTG CMSSVN CMSSVT
EGPR2 000006 DMSITS DMSSOP DMSSVT
EGPR5 000003 DMSXCP

EGPRY 000004 DMSDOS DMSSAB

ENDBLOC 000003 DMSEDI DMSEDX

ENDCDADR 000006 DMSLDR DMSLSB DMSOLD
ENDFREE 000002 DMSEXT DMSLBT

ENDTABS 000006 DMSEDI DMSEDX

ENTADR 000008 DMSLDR DMSOLD

ENTNAME 000005 DMSLDR DMSLSB DMSOLD
EOCADR 000006 DMSDMP DMSSHN DMSSTG
EQCHK 000002 DMSBOP DMSFCH

ERBIT 000008 DMSACF DMSERS DMSENM
ERBL 000001 DMSERR

FRDSECT 000002 DMSERR
ERF1BF 000002 DMSERR
ERF1HD 000003 DMSERR
ERF1SBN 000005 DMSERR
ERF1SB1 000003 DMSERR

90UdIDIBY SS0ID SINpoH-O03I-TeaqeT]

Z oENTOA--UOT3}RUTEIS}™®Q weiboagd pue otbo7T welIshs QLE/RA RAI 80Z-Z

LABEL

ERFITX
ERF2CH
ERF2DI
ERF2DT
ERF2PR
ERF2S1I
ERLET
ERMESS
ERNUM
ERPAS13
ERPBFA
ERPCS
ERPF1
ERPF2
ERPHDR
ERPLET
ERPNUM
ERPSBA
ERPTXA
ERR$202
ERRCODE
ERRCODO
ERRCOD1
ERRET
ERRMSG
ERRNUM
ERROR

ERSAVE
ERSBD
ERSBF
FRSBL
ERSECT
ERSFA
ERSFL
ERSFLAG
ERSFLST
ERSS2Z
ERTEXT
ERTPL
ERTPLA
ERTPLL
ERTSIZE
ERT1

COUNT

000002
000004
000001
000001
000001
000001
000001
000002
000002
000001
000002
000001
000013
000010
000001
000001
000001
000004
000003
000004
000065
000012
000020
000036
000023
000002
000196

000007
000013
000010
000005
000001
000004
000005
000050
000002
000002
000004
000004
000006
000008
000002
000008

REFERENCES

DMSERR
DMSERR
DMSERR
DMSERR
DMSERR
DMSERR
DMSERR
DMSERR
DMSERR
DMSERR
DMSERR
DMSERR
DMSERR
DMSERR
DMSERR
DMSERR
DMSERR
DMSERR
DMSERR
DMSEXT
DMSACC
DMSACHM
DMSACF
DMSCIO
DMSANS
DMSINT
DMSACH
DMSFCH
DMSRRY
DMSZAP
DMSERR
DMSZRR
DMSERR
DMSERR
DMSERR
DMSERR
DMSERR
DMSERS
DMSERR
DMSERR
DMSERR
DMSZERR
DMSERR
DMSERR
DMSERR
DMSERR

DMSARN

DMSERS
DMSINT
DMSCIO

DMSARN

DMSGRN
DMSSCR

DMSRNM

DMSDIO

DMSRNM
DNSITS
DMSERS

DMSARX
DHSIFC
DMSSET

CMSHDI

LHSPIO
DMSEXT

DMSASH
CMSLBM
CMSSLN

DMSHDS

DMSERT
DMSFCH

DMSBTP
DMSLIO
DMSSRY

DMSLBE

DMSPUN
DMSPIC

DMSCHP
DMSLLU
DMSSYN

DMSSAB

DMSYIP
DHSUPD

DMSDLK
DMSMOD
DMSTMA

LHMSSYN

DMSXCP

LMSLSK
LMSNCE
[MSTED

DMSDSL
DNMSOVR
DMSTPE

DMSDSY
DMSPRY
DMSUPD

CMSEDIX
CHMSRDC
DMSVYPD

DMSEDX
DMSRNE
DMSXCP

9dU8I8Jey SS01ID SINPON-O0I-TdQqRT

30911 SHD

se110

602-2

LABEL

FRT2
ESD1ST
ESIDTB
EXADD
FXAMLC
EXAMLG
EXECFLAG
EXECRUN
EXENACTE
EXENADDR
EXLEODF
EXLEODL
EXLEODP
EXLEVEL
EXLJRN
EXLJRNL
TXLLEN
EXLLERF
EXLLERL
FXLLERF
EXLSYNF
EXLSYNL
EXLRYNP
EXNUM
FXSAVE
EXSAVE1
EXTFLAG
FXTH
EXTNPSW
EXTOPSW
EXTPSW
FXTRET
EXTSEC?T
FCBRLKSZ
FCBBUFF
FCBBYTE
FCBCASE
FCBCATHL
FCBCLEAV
FCBCLOSE
FCBCON
FCBCOUT
FCEDCBCT
FCBDD
FCBDEV

COUNT

000013
000011
000040
000008
000005
000006
000003
000004
000009
000002
000004
000001
000001
000006
000002
000004
000009
000004
000001
000001
000004
000002
000001
000003
000007
000009
000006
000001
000001
000021
000005
000007
000013
000005
000045
000052
000004
000019
000004
000011
000003
000026
000004
000022
000054

REFERENCES
DMSERR

DMSDLK DMSLDR
DMSLDR DMSCLD
DMSEXC DMSEXT
DMSDBG

DMSDBG

DMSEXC

DMSEXC DMSGRN
DMSVIP

DMSVIP

DMSVIP

DMSVIP

DMSVIP

DMSEXC DMSEXT
DMSVIP

DMSVIP

DMSVIP

DMSVIP

DMsSvVIP

DMSVIP

DMSVIP

DMSVIP

DMSVIP

DMSEXC

DMSIT® DMSMVE
DMSITE

DMSIOV DMSITE
DMS(RY

DMSINI

DMSDBG DMSITE
DMSINT DMSITE
DMSITE

DMSINS DMSINT
DMSFLD DMSMVE
DMSARN DMSARX
DMSARN DMSARX
DMSILD DMSSEB
DMSARN DMSARX
DMSSOP

DMSARN DMSARX
DMSFLD DMSSOP
DMSSBS DMSSCT
DMssop

DMSARN DMSARX
DMSARN DMSARX

DMS5QS

DMSSVT

DHMSOLD

DMSSVN

DMSIOW
DMSROS
DMSASH
DMSASH
DMSSOP
DMSASHM

DMSASH
DMSSEB

DMSASHM
DMSASH

CMSITE
LMSSOP
CMSSBS
CMESBD
CHMSFLD
LCMSSCT
CMSSOP

CMSFCH
CMSFCH

DMSCRY

DMSSEB
DMSSBS

DMSSES
DMSSOP
DMSSQOS

DMSFLD
DMSFLD

DMSSET

DMSSOE
DMSSEER

DMSSCT
DHSSQS
DMSSVT

DMSMVE
DMSKVE

DMSSTG

LMSSQS
DESSOP

L¥ssopP

DMSQRY
CUSQRY

DMSSVN

CMSSVT
CMSSCS

DMSSVT

DMSSAF
DMSSAB

CMSSVT

DMSSVT

DMSSOP
DMSSES

DMSSVT
CMSSCT

CMSSEPR

DMSSOP

90U2193J9Y3 SS01) STNPOR-03I-Ioqe]

0Lz-z

Z eEnTop--UoT3RUTEISl}ag weiboid pue oT1hoT we3sis QLE/HA RAT

LABEL

FCBDOSL
FCBDSK
FCBDSMD
FCBDSNAN
FECBDSORG
FCBDSTYP
FCBLUM
FCBEND
FCBENSIZ
FCBFIRST
FCBFORY
FCBINIT
FCBIO
ICBIORD
FCBIOSW
FCBIOSW2
FCBIOWR
FCBITEN
FCBKEYS
FCBLRECL
FCBMEMBR
FCBMNV
FCBMODE
FCBMVFIL
FCBMVPDS
FCBNEXT
FCBNUH
FCBOP
ECBOPCE
FCBOS
FCBOSDSN
FCBOSFST
FCBPCH
FCBPDS
FECBPROC
FCBPROCC
TCBPROCO
ECBPRPU
FCBPTR
FCBPVMB
FCBRDR
FCBREAD
FCBRECTN
FCBRECL
FCBR13
FCBSECT

COUNT

000007
000012
000035
000052
000004
000016
000005
000001
000006
000016
000012
000069
000001
000003
000033
000024
000003
000062
000009
000006
000013
000004
000006
000002
000017
000004
000013
000119
000005
000017
000017
000020
000002
000011
000009
000005
000003
000006
000002
000003
000005
000022
000007
000005
000002
000043

REFERENCES
DMSFLD DMSSQP
DMSARX DMSASHM
DMSALU DMSFLD
DMSARX DMSASHM
DMSFLD

DMSFLD DMSCRY
DMSFLD DMSSAB
DMSFLD

DMSFLD

DMSABN DMSALU
DMSARN DMSARX
DMSARN DMSARX
DMSSEB

DMSSQsS

DMSARN DMSARX
DMSDSL DMSLDS
DMSSQS

DMSARN DMSARX
DMSSBD DMSSOP
DMSFLD DMSMVE
DMSFLD DMSLDS
DMSMVE DMSSVT
DMSFLD DMSSBS
DMSMVE DMSSER
DMSDSL DMSLDS
DMSALU DMSFLD
DMSABN DMSFLD
DMSY¥CH DMSMVE
DMSMVE DMSSEB
DMSSBS DMSSCT
DMSFLD DMSLDS
DMSALU DMSFCH
DMSFLD

DMSSBS DMSSCT
DMSARN DMSFLD
DMSARN DMSARX
DMSARN DMSSOP
DMSSEB

DMSFLD

DMSSQS

DMSARX DMSASH
DMSARN DMSARX
DMSFLD DMSMVE
DMSSEB DMSSOP
DMSSCT DMSSEB
DMSALU DMSARN

DMSSVT
DMSFCH
DMSMVE
DHMSFCH

DMSROS
DMSSOP

DMSFLD
DMSASH
DMSASH

DHSASHM
DMSMVE

DMSASH
DMSSVT
DMSROS
DMSROS

DMSSEB

DMSMVE
DMSROS
DMSQRY
DMSROS

DMSSEB
DMSRCS
DMSMVE

DMSsSOP
DMSROS
DMSASM

DMSFLD
DMSASH
DMSROS

DMSARX

CMSFLL
CMSROS
DMSFLL
CMSSEE
CMSSVT

LCHSORY
CMSSER
CMSFCH

CHMSFLLD
TMSROS
CMSDSL

CMSSOP
CMSSER

LMSSOP

CMSROS

CMSSPET
DMSSOP
CMSROS
LMSSVYT

CMSSEB
DMSSOP

LHSSOP
CMSSBS
CMSSBD

CMSASH

DMSHMVE
DMSSBS
DMSMVE

DMSSOP

DMSROS
DMSSOP
DMSFLD

DMSSCT
DMSSER

DMSMVE

DMsSsOP

DMSSEB

DMSEBS
DMSSVT

DMSsCT

DMSsOP

DMSSEB
DMSSEB

DMSDSL

DMSSOEF
DMSSEE
DMSCRY

DMSSVT

DMSSAE
DMSSVT
DMSHMVE

DMSSEE
DMSSOE

DMSSBL

DMSSOE

DMSSCT

DMSSOE

DMSSQS
DMSSCE

DMSFCH

DMSSVT
DEssop
DUSROS

DKSsSOP

DMSSES

russop
DUSSVT

DMSSES

DHSSVT

DMSSEB

DMSSVT

DESFLD

IMSSCS
I'MSSES

LMSSVYT

DMSSCT

DMSSCS

DMSSCT

DMSSCP

DMSLDS

DMSSCT DMSSOP DMSSVT

DMSSEER DMSSOP DMSSQS DMSSVI
DMSSEE LCMSSoP DMSSQS DMSSVI
DMSSQS CMSSVT

DMSHNVE CMSQRY DMSROS DMSSAB

©0U81939Y SS01I) SINPOK-03-ToqRT

TIOIODBITQ SWI

SaTax

N XA A

LABEL

FCBTAB
FCBTAP
FCBTAPID
FCBTBS?
FCBTCLOS
FCBXTENT
TCHAPHNM
FCHLENG
FCHOPT
FCHTAB
FDISK
¥FD

FFE

FFF

FFS

FILE

FILFBUFF
IILEBYTE
FILECOUT
FILEITCSM
FILEMODE
FILEMS
FILENAME
FILEREAD
FILETYPE
FINIS
FINISLST
FIRSTDMP
FLAG
FLAGLOC
FLAGS
FLAG1
FLAG2

FLAG3
FLCLN
FLGSAVE
FLHC
FLNU
FLPA
FMODE
FNAME

COUNT

000001
000010
000006
000004
000003
000011
000002
000003
000002
000008
000003
000005
000002
000004
000005
000080

000023
000009
000002
000007
000013
000006
000048
000002
000013
000066
000004
000002
000136
000004
000164
000077
000137

000019
000011
000002
000008
000007
000016
000047
000062

REFIRENCES
DMSSBD DMSSBS
DMSSVT

DMSARX DMSASHM
DMSFLD DMSMVE
DMSSBS DMSSVT
DMSSOP

DMSFLD DMSSBD
DMSFET

DMSDOS DMSFET
DMSFET

DMSDOS DMSFET
DMSLDR DMSNUC
DMSACH DMSAUD
DMSACH DMsSAUD
DMSACH DMSAUD
DMSGRY

DMSACH DMSARX
DMSGLB DMSGND
DMSPUN DMSRDC
DMS EXC DMSPRT
DMSEXC DMSROS
DMSSVT

DMSSVT

DMSEXC DMSNCP
DMSEDT

DMSINT DMSNCP
DMSROS DMSSOP
DMSBOP DMSCLS
DMSARN DMSFNC
DMSAUD DMSFNS
DMSDBG

DMSEDI DMSEDX
DMSEDX DMSSCR
DMSFRE DMSITS
DMSARX DMSASH
DMSARX DMSASH
DMSTPD

DMSASN DMSFLD
DMSFRE

DMSALU

DMSFRE

DMSFRE

DMSFRE

DMSEDI DMSEDX
DMSDSK DMSEDI

DMSSRV

DMSTYP

DMSSCT

DMSFLD
DMSQORY

DMSSES

DMSOLD
DMSEXC

DMSASH
DMSIFC
DMSRNM
DMSPUN
DMsSSOP

DMSPRT
DMSPRT
DMSINT
DMSYRE
DMSINT
DMSEXT
DMSI.BY
DMSEXT
DMSASN

DMSLLR

DMSEXT
DMSEDX
DMSUPD

CMSSER
CMSMVE
[C¥SSEB

DNHSSOP

LNSBOP
DHMSLBM
DMSSLN
IMSRIC
CHSSVYT
CHSPUN
CMEPUN
CMSPRT
CMSLBT
CMSFOR
CMSLBT
CMSFLL
CMSEDI

DMSOLD

CHMSLBT

CMSEXT

LMSVPD

DMSSOP

DMSSBS

DMSSVT

DMSCLS
DMSLBT
DMSETT
DMSROS

DMSRDC
DMSRDC
DMSPUN
DMSLDR
DMSLST
DHUSLDR

DMSLDR
DMSEDX

DMSLDS
DMSLGT

DMSSQS

DMSSCT

DMSCHP
DMSLGT
DMSSYN
DMSSVI

DMNSSOE
DMSROS
DMSSOE
DMSLIE
DMSHVE
DMSLIE

DMSLIC
DMSFLL

DMSLGT
DMSLIE

DESSVN

CESSOP

DMSDLB
DMSLYR
DMSTPD
DMSTPD

DMSSVT
DMN5SCT
DMSSVT
DMSLLU
DMSSCR
DM5LSB

DHSLSE
DMSLDR

DMSLIB
DMSLIO

DMSSVT

DMSSVYT

DMSLSK
DMSLIC
DMSTEE

CMSTED
CMSSCF
DMSTEL
DMSCLD
DMSSRT
DMSLST

DMSCLD
CMSLIE

DMSLST
DMSLST

DMSDSL
DMSLKD
DMSTYP

DMSSVT

DMSSED

DMSSVYT

CMSOLL

CMSLIO

DMSRDC
DMSPRYV

DMSEDI
DMSMOD
DMSZAP

CHMSTPD

CMSSRT

DMSTPD
DMSOVS

CMSLSB

CMSRNE
DMSRNE

CMSEDX
DMSNCP

CMSTHMA

DHSTPE

DMSOLD

DMSSCR
DMSRRY

DMSFLD
DMSPRT

DMSTPE

DMSZAP

DMSSCR

DMSTYP
DMSSCR

@ouUaIajey SS0I) oTNPOH-03-ToqeT]

ZLz-¢

Z sunfoA--uotjeuTmiIalsg weiboag pue otboT weisis QLE/WA WEI

LABEL

FNBIT
FPRLOG
FPTR
FRDSECT
FREEAD
FREEFLG1
FREEFLG2
FREEHN
FREEHU
FREELEN
FREELN
FREELOWE

FREELOW1
FREELU
FREENEXT
FREERO
FREESAVE
FRERESPG
FRF1B
FRF1C
FRF1E
FRF1H
FRF1L
FRF1M
FRF1IN
FRF1V
FRF2CKE
FRF2CKT
FRF2CKX
FRF2CL
FRF2NOI
FRF2SVP
FRSTLOC
FRSTSDID
FSCBBUFF
FSCBD
FSCBFLG
FSCBFM
FSCBFN
FSCBFT
FSCBFV
FSCBITNO
FSIZE
FSTBKWD
FSTD

COUNT

000004
000003
000008
000005
000003
000028
000036
000007
000009
000006
000014
000050

000006
000006
000001
000003
000013
000007
000002
000003
000003
000006
000006
000004
000003
000003
000003
000007
000003
000012
000010
000003
000008
000002
000007
000020
000005
000006
000027
000007
000005
000011
000009
000001
000012

REFERENCES

DMSFNS
DMSDBG
DMSEDI
DMSFRE
DMSUPD
DMSFRE
DMSFRE
DMSFRE
DMSFRE
DMSEDPI
DMSBOP
DMSABN
DMSLSB
DMSFRE
DMSFRE
DMSEXT
DMSDIO
DMSFRE
DMSFCH
DMSTRE
DMSFRE
DMSFRE
DMSFRE
DMSFRE
DMSFRE
DMSFRE
DMSFRE
DMSFRE
DMSFRE
DMSFRE
DMSFRE
DMSFRE
DMSFRE
DMSMOD
DMSLDR
DMSDLK
DMSBRD
DMSBRD
DMSDLK
DMSDLK
DMSGRN
DMSBRD
DMSDLK
DMSEDI
DMSERS
DMSCPY

DMSUPD
DMSSET

DMSEDX
DMSCLS
DMSARX
DMSMOD
DMSSET

DMSINS

DMSSLN
DMSLSB
DMSIFC
DMSDLK

DMSGRN
DMSGRN
DMSZAP
DMSDLK
DMSEXT

DMSEDX

DMSUPD
DMSFRE

DMSASH -

DMSNCP

DMSSET

DMSZAP
DMSIFC

DMSIFC
DMSIFC

DMSIFC
DMSLBT

DMSEXC

CHSDLK
CHSOLL

CMSSMN

LMSZAP

CMSZAP
CMSZAP
CMSRNE

CMSFNS

DMSDOS
DMSSET

DHSSTG

DMSGND

DMSDSY
DMSSLN

DMSNCE

DESFCH
CMSSHN

DMSSOP

ITMSFRE
IMSSTG

LMSTPE

DMSINS

DMSINT

CMSLBY

DMSLDR

80U31938Y SS0I) 2TNPOH-03-[3qe1T

3OBITA SHI

s8TI0

€Le-¢

LABEL

FSTDATEW
FSTDBC
FSTFAP
FSTFAR
FSTFAW
FSTFB
FSTFCL
FSTFINRD
FSTFLAGS
FSTFMODE
FSTFNAME
FSETFRO
FSTFROX
FSTFRW
FSTFRWX
FSTFTYPE
FSTFV

FSTFWDP
FSTIC
FSTIL

FSTITAV
FSTL
FSTLRECL
FSTH

FSTN
ESTNOIT
FSTRECAV
FSTRECCT
FSTRECFM
FSTRP
FSTRWDSK
FSTSECT

FSTT
FSTWP
FSTXRDSK
FSTXTADR
FSTYR
FTRLCCONYV
FTRDLDNS
FTRTRAYS
FTRUCS

COUNT

000001
000007
000001
000001
000002
000008
000003
000012
000003
000008
000003
000001
000001
000003
000002
000007
000023

000002
000018
000025

000003
000005
000001
000028

000014
000001
000002
000001
000001
000004
000001
000059

000009
000010
000002
000007
000006
000001
000004
000001
000001

REFERENCES
DMSGND

DMSDSK DMSERS
DMSSTT

DMSSTT

DMSCPY DMSSTT
DMSCPY DMSDLK
DMSERS DMSTPE
DMSCAT DMSCIT
DMSSOP

DMSACC DMSEDX
DMSACC

DMSSTT

DMSSTT

DMSDLK DMSSTT
DMSDLK DMSSTT
DMSACC

DMSAMS DMSARX
DMSTPE DMSUPD
DMSERS

DMSACF DMSBOP
DMsSAMS DMSARX
DMSUPD DMSXCP
DMSBRD DMSCPY
DMSARN DMSARX
DMSEXC

DMSANS DMSARN
DMSLKD DMSRNM
DMSANS DMSCPY
DMSBRD

DMSBRD

DMSEDX

DMSEDX

DMSACF DMSBRD
DMSSOP

DMSACF DMSANS
DMSERS DMSFNS
DMSXCP DMSZAP
DMSACF DMSDSK
DMSACF DMSEWR
DMSSOP

DMSLDR DMSLOA
DMSCPY DMSFNS
DMSTPE

DMSTPE

DMSTPE

DMSASN

DMSTPE

DMSFNS
DMSCRD

DMSNCP

DMSZAP
DMSASHM
DMSZAP
DMSERD
DMSASHM
DMSZAP
DMSASH
DMSARX

DMSSTT
DMSDSK

DMSFNS

DMSARN
DMSGND

DMSERS

DMSFNS

DMSLSB

CHSSTT
CMSEDX

LMSsoP

CHSBRD

LMSCPY
CMSBWR
LMSDSL
DMSASH

DMSTPE
DMSERS

CMSTPE

CMSARX
DMSIFC

DMSFNS
CMSTPE

CMSOLD

DMSZAP

DMSEXT

DMSBWR

DMSDLK
DMSCPY
DMSLAF
DMSBOP

DMSUPD
DMSFNS

DMSASHM
DMSLAF

DMSRNM

DMSINT

DMSCPY

DMSDSK
DMSDLK

DMSCPY
DMSZAE
DMSRNY

DMSECE
DMSLBM

DMSTPE

DMSSVN

DMSDLK
DMSFNS

DMSDSK

DMSDLK

DHSTPE

DMSBRD
DMSLKD

CMSLSK

DMSLEM
DMSIFC

DMSDSK

DMSEWR
DMSMVE

DMSIFC

DMSTPE
DMSLBM

DMSERS

DMSCPY
DMSRNM

DMSLEM

DMSXCP
DMSLKD

DMSFNS

DMSDLK
DMSSTT

DMSLKD

DMSZAP
DMSMVE

CMSIFC

CMSDSK
LMSTPE

DMSMVE

DMSTPE

DMSLBM

DMSDSL
DMSUPD

|aoudI2Jey SS0ID STNPOR-OI-Toqe]

hic-¢

Z e¥nIoA--UOTIRUTKI®ISE Weaboid pue o>tbo wesks (OLE/HA WET

LABEL

FTR35MB
FTR7TRK
FTYPE
FV

FVS
FVSDSKA
FYSECT

EVSERASO
FYSERAST
FVSERASZ
FVSFSTAD
FVSFSTCL
FVSFSTDT
FVSFSTFV
FVSFSTIC
FVSFSTIL
FVSFSTM
FVSFSTY
EXD

FO

F1

F15

F2

F255
F256

F3

Fu

Fu4096

F5

Fo6
F65535
1

F800
GDISK
GETFLAG
GET1
GIOPLIST
GPRLOG
GPRSAV
GRAFDEV
HALF

HEX
FEEXHEX
HIPHAS

COUNT

000001
000001
000019
000014
000002
000002
000065

000013
000012
000004
000004
000001
000002
000001
000003
000003
000002
000001
000023
000025
000011
000005
000015
000002
000008
000009
000016
000002
000008
000033
000007
000006
000004
000001
000007
000002
000001
000011
000004
000001
000002
000041
000010
000006

REFERENCES
DMSASN

DMSTPE

DMSEDI DMSEDX
DMSEDI DMSEDX
DMSINS DMSITE
DMSACH DMSAUD
DMSABN DMSACC
DMSCWR DMSCWT
DMSLAD DMSLFS
DMSERS DMSRNM
DMSERS DMSRNM
DMSERS DMSRNM
DMsSMOD DMSPUN
DMSMOD

DMSSTT

DMSMOD

DMSACH DMSBTB
DMSACH DMSBTB
DMSDSK DMSSTT
DMSSTT

DMSDSL DMSSZB
DMSDBG DMSINS
DMSDLK DMSDSV
DMSDBG

DMSDLK DMSITE
DMSCRD

DMSCHR DMSHDI
DMsSAUD DMSDLK
DMSDLK DMSITE
DMSAMS DMSDBD
DMSDLK DMSXCP
DMSDEG DMSDLK
DMSACF DMSDSK
DMSEOP DMSOR3
DMSACH DMSAUD
DMSNUC

DMSEDI

DMSLSY

DMSSCR

DMSLBG DMSITS
DMSLDR DMSOLD
DMSINS

DMSEDI DMSLDS
DHUSCPY DMSDBG
DMSDBG

DMSFCH DMSFET

DMSLDR
DMSSCR

DMSACF
DMSDIO
DMSMOD

DMSSTT

DMSMOD
DMSMOD

DMSSOP
DMSITE
DMSEXT

DMSHDS
DMSTQQ
DMSITE
DMSHOD

DMSXCP
DMSDSK

DMSDLK

CMSLGT

CHSACH
DMSLOS
DMSPNT

LM¥SSQOS
DMSITS
CMSSTG

LK¥SITS
CMEPNT

LMsros

DMSLIB

DMSALU
DMSDSK
DMSQRY

DMSTHMA

DMSSOP
DMSSLN

DMSDSV

DMSLST

DMSAUTL
DMSERS
DMSRNM

DMSTPL

DMSTCC

DMSEDI

DMSOLD

DMSBRD
DMSFNS
DMSSLN

DMSFNS

DMSPRV

DMSETE
DMSINT
LMSSCP

DMSPRT

DMSRRV

DMSBTP
DMSITE
DMSSTT

LMSSSK

DMSSCR

CMSBWR
CMSITI
CMSTPE

DASTPE

CMSSRYV

CMSCIT
DMSITP
DMSTQQ

CHMSTYP

DMSTYP

DHUSCRD
DMSITS

DMSZAP

30Ud1839Y SS01D) SINPOR-03-Toqe1

30231Tq SWO

satio

aLe-¢

LABEL

HIPROG
HOLD
HOLDFLAG
IADT

ic
IHADEB
THADECB
IHAJFCB
IJBABTAR
IJBBOX
IJBCCHT
IJBFLGO4
IJBFTTMAB
IKQACB
IKQEXLST
IKQRPL
INCRNO
INHIBIT
INPUT

INPUTSIZ
INPUT1
INSIZE
INSTALID
INTINFO
INTREQ
INVLD
INVLDHDR
IOAD
IOAREA
IORBRCSYW
IOBEECEC
IOBBECEP
IOBBFLG
TOBCSW
TOBDCBPT
IOBECB
IOBECBPT
IOBEND
IOBIN
IOBIOFLG
IOBNXTAD
IoBoOUT
IOBSTART
JOBUPD
JOCOMM

COUNT

000002
000012
000015
600003
000003
000020
000006
000001
000004
000001
000001
000001
000004
000007
000003
00000€
000003
000002
000068

000002
000002
000006
000005
000006
000001
000003
000001
000002
000002
000003
000002
000003
000002
000006
000001
000004
000003
000001
000C32
000045
000003
000007
000008
000004
000007

REFERENCES
DMSFCH

DMSBOP DMSDSK
DMSSCR

DMSACC DKSDSK
DMS30P DMSDBG
DMSFCH DMSMVE
DMSSBD DMSSBS
DMSSVT

DMSEAB DMSDOS
DMSSTG

DMSDOS

DMSFOP

DMSDOS DMSFET
DMSBOP DMSCLS
DMSVIP

DMSVIP

DMSEDI

DMSDIO

DMSARN TMSBOP
DMSNCP DMSNUC
DMSDBG

DMSDBG

DMSLBEM DMSSRT
DMSINI DMSPRT
DMSDOS DMSITP
DMSFCH

DMSEDI

DMSEDX

DMSEDY

DMSRDC DMSTYP
DMSSBS DMSSEB
DMSSEB

DMSSBS DMSSEB
DMSSBS DMSSCT
DMSARN DMSARX
DMSSOP

DMSIFC DMSSQS
DMSSQS

DMSSOP

DMSARN DMSARX
DMSARN DMSARX
DMSSOP

DMSSBS DMSSCT
DMSSOP DMSSQS
DMSSQS

DMSLIO

DMSITI
DMSLAD

DMSSES
DMSSCT

DMSITP

DMSVIP

DMSCPY
DHSOR

DMSASHM

DMSASM
DMSASHM

DMSSQS

DMSSCT
LCMSSEB

CMSDBT
DMSPRV

DMSSBS

LCMSSBD
CMSSBD

DMSSOP DMSSQS DMSSVT
DMSSVT

DMSDBG DMSDSL DMSDSV
DMSQRY DMSRRYV DMSSRY
DMSSCT

DMSSES DMSSEE DMSSOP
DMSSBS DMSSCT DUSSEB

DMSELX
DMSTEE

LCMSSCS
DMSSCP

DMSFCH
DMSXCP

DMSSYT
CMSSQS

DMSGRN
CMSZAP

DMSSVT

DMSITE

DMSMVE

8ouUB 18I0y SS01I5 STNPOH-03I-Toqel

91z~

¢ oWnToA--UOT3eRUTWIS}®Q weiboiad pue orbo7 ®aysis QLE/WA RAI

LABEL

TI0ID
IOLIST
TOMODE
JIONPSW
IONTABL
IOOLD
IOOPSW
IOPSW
IOSAVE
IOSECT
IPLADDR
IPLCCHW1
IPLPSW
ITEN
ITSBIT
JAR
JCSwW2
JCSW3
JCSH4
JFCBIND2
JFCBMASK
JFCBUFNO
JFCDSORG
JFCKEYLE
JFCLIMCT
JFCLRECL
JFCOPTCD
JFIRST
JFLAGS
JLAST
JNUMB
JOBDATE
JR1

JSRO
JSYM
KEYCHNG
KEYCOUT
KEYFORM
KEYLNGTH
KEYMAX
KEYNAME
KEYOP
KEYP
KEYS
KEYSECT
KEYTARLE

COUNT

000005
000051
000003
000006
000012
000002
000027
000001
000005
000004
000003
000001
000009
000073
000007
000003
000001
000016
000005
000002
000022
000001
000002
000003
000003
000001
000008
000009
000014
000010
000012
000004
000008
000012
000002
000006
000004
000002
000010
000002
000007
000009
000008
000003
000002
000011

REFERENCES
DMSIDI DMSEDX
DMSEDPI DMSEDX
DMSZDI DMSEDX
DMSINI DMSINS
DMSABN DMSHDI
DMSDIO DMSITI
DMSCIT DMSDBG
DMSITI

DMSITI

DMSABN DMSHDI
DMSBTP DMSINS
DMSINI

DMSABN DMSDBG
DMSERD DMSEDI
DMSITS

DMSEDI DMSEDX
DMSDOS

DMSOPT DMSSET
DMSDOS DMSOPT
DMSFLD DMsSsoP
DMSSOP DMSSYT
DMSFLD

DMSSOP

DMSFLD DMSSOP
DMSFLD DMSSOP
DMSSVT

DMSFLD DMSSOP
DMSHDS DMSITS
DMSDBG

DMSHDS DMSITS
DMSHDS DMSINT
DMSDLK DMSDOS
DMSITE

DMSACF DMSACH
DMSLSY

DMSSBD DMSSVT
DMSSBD DMSSVT
DMSSVT

DMSSBD DMSSVT
DMSITS

DMSSBD DMSSVT
DMSSED DMSSVT
DMSITS

DMSBTP DMSITS
DMSSBD DMSSVT
DMSSVT

DMSIOW
DMSINT
DMSDIO
DMSINT
DMSINI

DMSEDX

DMSSET

DMSITS
DMSSET

CMSITE
LMSIOW

CMSINT

DMSITI

DMSINS
LMSSCR

DMSITI

DMSIOW

DMSUPD

DMSITE

DESITI

80Ua313J3Y SS01I) STNpoR-03-ToqeT

3083ITQ SHO

SeTI0

Le-z

LABEL

KEYTBLAD
KEYTBLNO
KEYTYPE
KXFLAG

KXWANT

KXWSVC
LABLEN
LASTALOC
LASTCHMND
LASTCYL
LASTDMP
LASTEXEC
LASTHED
LASTLINE
LASTLMOD
LASTLOC
LASTREC
LASTTMOD
LASTUSER
LDMSROS
LDRADDR
LDRFLAGS
LDRRTCD
LDRST
LENOVS
LINE
LINELOC
LINENO
LINE1
LINE1A
LINE1B
LINE1C
LINKLAST
LINKLEN
LINKSTRT
LMCURR
LMINCR
LMSTART
LOADLIST
LOADSTRT
LocC

COUNT

000009
000016
000002
000020

000013

000005
000003
000004
000011
000003
000001
000002
000003
000012
000002
000001
000014
000008
000003
000004
000014
000019
000003
000009
000003
000053
000002
000002
000002
000001
000001
000001
000007
000004
000009
000005
000005
000010
000001
000004
000156

REFERENCES

DMSSBD
DMSSBD
DMSSVT
DMSABN
DMSITI
DMSABN
DMSTPE
DMSCRD
DMSDLK
DMSITS
DMSEXT
DMSDIO
DMSDBG
DMSEXT
DMSDIO
DMSDBD
DHSMOD
DMSFET
DMSCLsS
DMSITS
DMSITE
DMSABN
DMSLDR
DMSLDR
DMSLDR
DMSLDR
DMSITS
DMSBTP
DMSEDX
DMSEDI
DMSDBD
DMSDBD
DMSDBD
DMSDBD
DMSSAB
DMSEXT
DMSSLN
DMSEDI
DMSEDI
DMSEDL
DMSIFC
DMSINS
DMSABN
DMSCRD
DMSFNC
DMSITP

DMSSVT
DMSSYT

DMSACC
DMSITS
DMSACC

DMSCWR
DMSEXT

DMSINT

DMSZAP
DMSSLN

DMSDIO
DMSLSB
DMSSAB
DMSACHM
DNSLIO
DMSLOA
DMSOLD
DMSLGT
DMSOVR
DMSDBD
DMSSCR

DMSLIO

DMSSLN

DMSSTG

DMSEDX

DMSSET
DMSACC
DMSDIO
DMSFNS
DMSITS

DMSAUD
DMSRNM
DMSAUD

DMSCHWT

DMSZAP
DMSMOD
DMSSO0P
DMSALU
DHSLOA
DMSHMOD

DMSLIB

DMSDBG

DMSSTG

DMSSVT

DMSACF
DMSDLB
DMSFOR
DMSLAD

DMSBWR
DMSTPE
DMSB¥R

DMSITS

DMSSLN
LMSOLD
LMSOLT
CMSLIO

CMSEDI

CNSACH
DMSDMP
CHSFRE
CMSLAF

DMSCIT

DMSCIT

DMSSLN
DMSLSB

DMSEDX

DMSALU
DMSDOS
DMSGIO
DMSLDR

DMSCRD

DMSDIC

DMSOLD

DMSITE

DMSAMS
DMSEDX
DMSGLE
DMSLGT

DMSCWR

DMSDSK

DMSNUC

DMSAUD
DMSERS
DMSHDY
DHSLIB

DMSCHWT

DMSERS

DMSECE
DMSEXC
DMSHLS
DMSLSE

DMSDIC

DNSFNS

DMSBWR
DMSEXT
DMSIFC
DMSMOL

DMSLSK

LMSITI

DMSCIT
CMSFCH
DMSINS
DMSOLD

LHASERS

DMSITS

DMSCLS
LMSFET
DMSINT
LMSOPL

DMSFNS

DMSRNHM

puscup
DMSFLD
DMSITE
DMSOR1

aoUa19J9y SSO0I) STNPOR-03I-TaqeT

8LZ-¢

Z oEnTop--uoTrjeUTHIS®}EQ Weaboag pue otboT welrshs gLE/WA WEI

LABEL

LOCCNT

LOCCT
LOWSAVE
LSTFINRD
LTK

LUB
LUBCLB
LUBP
LUBPR
LUBPT
LUBRES
LUBRLB
LUBSLB
LUBO14
LUNDEF
MACDIRC
MACLBSYV
MACLIBL
MACRO
MAINAD
MAINHIGH
MAINLIST
MAINSTRT
MAX
MAXCODE
MCKHM
MCRNPSW
MDPCALL
MEMBOUND
MISFLAGS

MODDISP
MODFLGS
MODGNALL
MODGNDOS
MODLIST
MSGFLAGS
MVCNT
MVCNT
MVCNT2
NDIKQLAB
NEED
NEGITS

COUNT

000039

000025
000007
000005
000009
000004
000002
000002
000002
000016
000003
000003
000001
000002
000012
000011
000004
000009
000003
000003
000037
000012
000008
000013
000001
000014
000001
000004
000008
000043

000001
000027
000002
000003
000002
000025
000001
000004
000001
000002
000007
000013

REFERENCES
DMSOVR DMSPRT
DMSSVN DMSSVT
DMSACHM DMSBTB
DMSSLN DMSSMN
DMSLDR DMSLSB
DMSDBG DMSSVT
DMSCIT DMSCRD
DMSAMS DMSDOS
DMSPLK DMSDSV
DMSDSV

DMSDSY

DMSDLK DMSDSV
DMSAMS DMSBOP
DMSDLK DMSDSV
DMSTLK DMSDSV
DMSDsSV

DMSDLK DMSDSV
DMSLDR DMSOLD
DMSABN DMSSCT
DMSGLB

DMSGLB DMSCRY
DMSEDI

DMSEDX

DMSARX DMSASH
DMSDOS DMSFCH
DMSDOS DMSFCH
DMSASHM DMSFRE
DMSFRE

DMSINI DMSINS
DMSINT

DMSMDP DMSMOD
DMSLDR TMSOLD
DMSABN DMSACC
DMSINS DMSINT
DMSZAP

DMSACH DMSINS
DMSMOD

DMSMOD

DMSITS DMSSLN
DMSCAT DMSCIT
DMSDBG

DMSDBD DMSDBG
DMSDBG

DMSXCP

DMSZXT DMSLDR
DMSCAT DUSEXC

DMSPUN
DMSSYN
DMSEDX
DMSSTG
DMSOLD

DMSSVN
DMSITP

DMSCLS

DMSSOP
DMSSCT
DMSDOS

DMSSMN
DMSSMN

DMSITS

DMSAMS
DMSITI

DMSLDR

DMSCRD

DMSITE

DMSOLD
DMSINT

DMSQRY
LMSTPE
CMSFET

CMSSET

CMSDLB

LMSSTG
LMSSOP
CMSFCH

DMSSTG
LCMSSTG

CMSARN
DMSITS

CMSLSB

CNSCVR

CMSNUC

CESITS

DMSRNE
DMSTYP
DMSFRE

DMSFCH

DMSSVT

DMSSTG

DMSFRE

DMSARX
DMSLBM

DMSMDP

DMSEDI

DMSCRY

DMSROS
DMSUPD
DMSINS

DMSLLU

DMSSVT

DMSINS

DMSASH
DMSLET

DMSMOL

DMSEXT

DMSSET

DMSSAB
DMSVIP
DMSINT

DASOPL

DMSLDR

DMSCAT
DMSLKD

LUSOLD

DMSINS

DMSSET
DMSVED
DMSLDR

DMSPRV

DMSLCA

I'MSCIT
I'MSCRY

DMSSET

I'MSINT

DMSSLN
DMSVSR
DMSLOA

DMSRRV

DMSLSE

DMSCPY
DMSSET

DMSQRY

DMSSOP
DMSXCP
DMSMOL

DMSSET

DMSSET

DMSCRL
DMSSRT

LCMSSET

LMSSQS
DMSZAP
DMSOLD

CMSSRV

DMSSMN

CMSEDI
CHMSSTG

DMSTYP

DMSSTG

DMSSET

DMSXCP

DMSSTG

DMSEXC
DMSUPD

®0U9183J9Y¥ 5S01) STNPOR-03I-ToqeRT

30eITd SHWO

se1i0

6LZ-C

LABEL

NEWPLKS
NEWMODE
NEWNAME
NEWTYPE
NEXTO
NICCIBHM
NICCTLR
NICDISA
NICEPMD
NICGRAT
NICLBSC
NICLGRP
NICLINE
NICLPT
NICMLTP
NICRCPU
NICRSPL
NICSDLC
NICSWCH
NICSWEP
NICTELZ
NICTERY
NOARBBRTV
NOAUTO
NODUP
NOERASE
NOIMPCP
NOIMPEX
NOINV
NOLIBE
NOMAP
NOMAPFLG
NOP
NOPAGREL
NORLYMSG
NORDYTIM
NOREP
NOSLCADR
NOSTDSYN
NOSYS
NOTEXT
YOTIME
NOTYPING
NOVMREAD
NRMRET
NRMSAV

COUNT

000005
000009
000020
000005
000001
000008
000001
000004
000002
000004
000001
000002
000003
000005
000001
000028
000006
000001
000001
000001
000008
000003
000006
000007
000007
000008
000007
000004
000005
000009
000007
000003
000014
000005
000002
000006
000006
000006
000005
000002
000009
000002
000011
000003
000010
000019

REFERENCES

DMSSVT
DMSEDI
DMSEDI
DMSEDI
DMSITI
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSEOP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSNCP
DMSACP
DMSNCP
DMSINA
DMSDLK
DMSLDR
DMSARN
DMSINT
DMSINT
DMSLDR
DMSLBT
DMSDLK
DMsSMOD
DMSINI
DMSABN
DMSSET
DMSINT
DMSLDR
DMSLDR
DMSINA
DMSEXC
DMSDOS
DMSPUN
DMSCAT
DMSINS
DMSABN
DMSITS

DMSRNM
DMSRNM
DMSRNM

DMSCLS

DMSINT
DMSLDR
DMSLSB
DMSARX
DMSCRY
DMSQRY
DMS1OA
DNMSLDR
DMSLIO

DMSXCP
CMSINT

DMSQRY
DMSLOA
DMSOLD
DMSQRY

DMSFCH
DMSCIT

DMSINT
DMSITS

DMSUPD

DMSDLB

DMSQRY
DMSLIB
DMSOLD
DMSASH
DMSSET
DMSSET
DMSLSB
DMSLIB
DMSLOA

DMSQRY

DMSSET
DMSLSB

DHMSSYN
DNSFET
DMSCRD

DMSSET
DMSVIP

CMSLLU

CMSSET
CHMSLOA
LMSLIO

CMSOLTD
LMSLOA
CMSLSB

LMSSET

LMSOLD

LCESCWR

DMSXCP

DMSLSB

DMSLOA

DMSLSB

DMSUPD

DMSEDI

DMSCLT

DMSMCL

DMSOLL

DMSEXT

DMSUPD

DMSTINT

DMSTYP

20Ua18J8Yy SS0I) STNPOH-OI-TeqeT]

0zz-z

¢ Ssnjop--OOT3}RUTWIS}SQ Eexboad pue otboT waisAs (Ore/WA RAT

LABEL

NRMUSAYV
NUCCODE "~
KUCKEY
NUCON

NUCRSV3
NUM

NUMBYTE
NUMFINRD
NUMLOC
NUMPNDWR
NXTSYM
OFF
OLDEST
OLDPSW
ON

OPSECT

OPSH
OPTFLAGS
OPTNBYTE
ORG
OSADTDSK
OSADTFST
OSADTVTA
OSACTVTB
OSFST
OSPSTALT
OSFSTBLK
OSFSTCHR

count

000001
000004
000002
000428

000001
000574

000005
000014
000002
000016
000004
000042
000001
000071
000047

000029

000016
000030
000001
000004
000009
000005
000008
000008
000013
000009
000005
000014

REFERENCES

DMSITS
DMSFRE
DMSFRE
DMSABN
DMSBAB
DMSCPY
DMSDSL
DMSFOR
DMSINT
DMSLFS
DMSMVE
DMSPUN
DMSSET
DMSSYN
DMSDOS
DMSABY
DMSCIO
DMSEDI
DMSINA
DMSNCP
DMSSCR
DMSSCR
DMSVIB
DMSLDR
DMSABN
DMSEDX
DMSCIT
DMSLDR
DMSBTP
DMSITI
DMSABN
DMSBOP
DMSUPD
DMSABN
DMSROS
DMSITP
DMSABN
DMSSTG
DMSDBG
DMSLDS
DMSARN
DMSACH
DMSLDS
DMSABN
DMSEROS
DMSMVE
DMSROS

DMSSET
DMSACC
DMSBOP
DMSCRD
DMSDSV

‘'DMSFRE

DMSIOW
DMSLGT
DMSNCP
DMSCRY
DMSSLN
DMSTIO

DMSACC
DMSCLS
DMSEDX
DMSINS
DMSOLD
DMSSCT
DMSSCT
DMSVIP
DMSLIB
CMSBTE
CMSSCR
DMSCRD
CMSLSY
LMSCLS

DMSBAB
DMSEDI
DMSXCP
DMSARX
DMSSBD

DMSINA

DMSROS
DMSALU
DMSLDS
DMSROS
DMSALU

DMSROS
DMSSOP

DMSACF
DMSERD
DMSCHWR
DMSEDI
DMSGIO
PMSITE
DMSLIB
DMSOLD
DMSRDC
DMSSHMN
DMSTPD

DMSAMS
DMSCHMP
DMSERS
DMSITP
DMSOPL
DMSSET
DMSSET
DMSVYPD
DMSOLD
DMSCAT

DMSCHR
DMSOLD
DMSDBG

DMSDOS
DMSEDX

DMSASHM
DMSSBS

DMSINS

DMSROS
DMSROS

DMSBOP

DMSSOP

CMSACH
CMSBTB
LMSCHT
CMSEDX
TMSGLB
CMSITI
LMSLIO
CY¥SOPL
CMSRNE
LCESSOP
CMSTPE

CMSARE
LMSCPY
CMEEXC
CHMSITS
CHSOR1
DMssoP
DMSsopP
DMSZAP

CMSCIT
CMSCHWT
CMSEDI

DMSERR
CMSERS

CHSCPY
DMSSCT

CMSINT

DM¥SDLK

DMSALU
DMSBTP
DMSDBD
DMSERR
DMSGNTD
DMSITP
DMSLKD
DMSCPT
DMSRNHM
DMSsSQsS
DMSTQQ

DMSARN
DMSDIO
DMSFET
DMSLBM
DMSCVR
DMSSRT
DMSSRT
DMSCRD
DHMSITE
DMSEXT

DHSIFC
DMSEXT

DMSCRD
DMSSEB

DMSQRY

DMSFCH

DMSAMS
DMSEWR
DMSDEG
DMSERS
DMSHDI
DMSITS
DMSLLU
DMSCR1
DMSROS
DMSSRT
DMSTYE

DMSARX
DMSDLE
DMSFLT
DMSLBT
DMSPIC
DMSSSK
DMSSSK
DMSSVN
DMSSVN
DMSITS

DMSITS
DMSITS

DMSCWE
DMSSOE

DMSSET

DMSMVE

DMSARE
DMSCAT
DMSDIO
DMSEXC
DMSHDS
DNMSLAD
DMSLOA
DMSOVR
DHUSRRV
DMSSRV
DMSUPD

DMSASH
DMSDLK
DYSFNC
DMSLDR
DMSPRT
DMSSVT
DMSSVT

DMSOVR

DMSOVS
DMSLDS

DHSCHT
DMSSCS

DMSSYN

DMSROS

CHUSARN
DMSCIC
DMSDLE
CHMSEXT
LMSITC
DMSLAT
DMSLSE
LMSQVsS
DMSSAER
CMSSSK
DNSVIB

CMSASN
DMSCHME
CMSFNS
DMSLTCS
CMSPUN
DMSSYN
DMSSYN

DMSSET

DMSSAB
DHMSOR1

DMSLEG
CMSSVN

DMSRRV

DMSARX
DMSCIT
DMSDLK
DMSFCH
DMSINA
PMSLEM
DMSLST
DMSPIO
DMSSBS
DMSSTG
DMSVIP

DMSBOP
DMSDOS
DMSFOR
DMSLIO
DMSQRY
DMSTPT
DMSTPT

DMSUPL

DMSSLN
DMSOVR

DMSEXC
DMSSVT

DMSSOP

CMSASM
CMSCLS
DMSDMP
CMSFET
CMSINI
CMSLBT
DMSLSY
CMSPNT
DMSSCN
DMSSTT
DMSVSR

CMSETE
DMSDSK
CMSFRE
DMSLST
DMSRIC
DMSTPE
DMSTPE

DMSXCP

CHSSTG
DMSOVS

DMSEXT

CMSSRV

DMSASN
DMSCHMP
DMSDOS
CMSFLD
DMSINM
CMSLLR
CMSMDP
DMSPRT
DMSSCT
DMSSVN
CMSXCP

CMSERTP
CMSDSL
DMSGND
DMsSMOD
DMSREA
LMSTYP
DMSTYP

DMSSYT
DMSRNM

DHSINS

DMSSTT

DMSAUD
DMSCPF
DMSDSK
DMSFNS
DMSIKS
DMSLDS
DYSMOD
DMSPRV
DMSSEER
DMSSVT
DHSZAP

DMSBWR
DMSDSYV
DMSIFC
DMSMVE
DMSRNM
DMSUPD
DNMSUPD

DMSVIP
DMSSET

DMSINT

8ou319Ioy SS01) STNPOR-03 -[dqe1T

3OSITA SKHD

seTIO

122-2

LABEL

OSFSTD3K
OSFSTDSK
OSFSTDSN
OSFSTEND
OSFSTEX4
OSFSTFLG
OSFSTFM

OSFSTFVF
OSFSTLRL
OSFSTLTH
OSFSTMEM
OSFSTMVL
OSFSTNTE
OSFSTNXT
OSFSTRFM
OSFSTRSW
OSFSTTRK
OSFSTTYP
OSFSTUMV
OSFSTXNO
OSFSTXTN
OSIOTYPF
OSMODLDW
OSRESET

OSSFLAGS

OSSMNU
OSTENP
OSWAIT
OUTBUF
OUTPT1
0UTPUT
OVAPF

OVBPF

OVF1F

OVF1FS
OVF1GA
OVF1GB
OVF1GS
OVF10¥N
OVF1PA
OVF2CH
OVF2NR
OVF205
OVF2ST
OVF2WA

COUNT

000002
000006
000002
000007
000006
000023
000007
000002
000005
000005
000001
000001
000011
000004
000012
000009
000008
000003
000001
000005
000013
000016
000013
000010
000059

000005
000029
000006
000053
000010
000034
000004
000005
000002
000002
000002
000003
000002
000011
000002
000603
000003
000003
000001
000002

REFERENCES

DMSROS
DMSDLK
DMSROS
DMSROS
DMSROS
DMSROS
DMSBOP
DMSROS
DMSMVE
DMSABN
DMSROS
DMSROS
DMSROS
DMSABN
DMSBOP
DMSROS
DMSROS
DMSROS
DMSROS
DMSBOP
DMSBOP
DMSARX
DMSABN
DMSEXT
DMSARN
DMSSLN
DMSSMN
DMSBAB
DMSCIT
DMSLDR
DMSDBG
DMSLLF
DMSOVR
DMSOVR
DMSOVR
DMSOVR
DMSOVR
DCMSQOVR
DMSOVR
DMSOVR
DMSOVR
DMSOVR
DMSOVR
DMSOVR
DMSOVS
DMSOVR

DMSFCH

DMSSTT
DMSROS

DMSROS
DMSALU

DMSALU
DMSMVE

DMSROS
DMSDLK
DMSASHM
DMSINS
DMSINT
DMSARX
DMSSMN

DMSLOS
DMSITE
DMSLGT

DMSDSL
DMSGVS
DMSOVS
DMSQVS
DMSOVS
DMsSoOVS
D¥SCVS
DMSOVS
DMSOVS
DMSOVS
DKMSQVS
DMSOVS
DMSQVS

DMSROS

DMSSTT

DMSSOP
DMSEOS

DMSROS
DMSROS

DMSFCH
DMSSES
DMSSET
DMSLDR
DMSASHM
DMSSTG

DMSSLN
DMSSVN
DMSLIB

DMSGRN

DMSRRV

LM¥SSOoP

CMSROS
DMSSOP

CMSOLT
CMSCIT
DHSSVN
CHSSVT
LMSLIO

CMSLDR

DMSSRYV

DMSRRY
DMSS¢S

DMSSLN

DMSEXT
DMSSVT

DMSLSB

DMSLIO

DMSSRY
DNMSSVT

DMSSVT
DMSIFC

DMSOLD

DMSMVE

DMSINT

DMSRRY

DMSCLD

DHSITE

CMSSRY

DMSCR1

DMSLELR

DMSOVS

DMSLIB

CMSQRY

DMSLIO

CMSTPE

DMSOLD

DMSXCP

asualajey SS0I) oINpPOR-03I-T=qeT]

¢ SEnToA--uoT}RUTHI®I®Q wWeiboad pue o1hoT Ba3ISAS QLE/WA RAT Zzz-z

LABEL

OVSAFT
OVSECT
QVSHO
QVSON
0vVsso
OVSTAT
PACK
PADBUF
PADCHAR
PARMLIST
PCPTR
PCTVSAM
PDSBLKSI
PDSDIR
PDSSECT
PENDREAD
PENDWRIT
PGMNPSW
PGMOPSW
PGMSECT
PIBADR
PIBFLG
PIBPT
PIBSAVE
PIB2PTR
PICADDR
PIE

PIK
PLIST

PLISTSAV
PNOTFND
PO
POINTER
POU
PPBEG
PPEND
PREVCMND
PREVEXEC
PREVIOUS
PREXIST
PRFPOFF
PRFTSYS
PRFUSYS
PRHOLD
PRINTER1

COUNT

000011
000003
000004
000008
000006
000029
000029
000017
000007
000013
000004
000002
000008
000003
000002
000022
000011
000006
000017
000006
000010
000001
000022
000015
000003
000004
000002
000014
000123

000018
000008
000015
000026
000001
000002
000018
000005
000001
000017
000006
000009
000006
000005
000003
000001

REFERENCES
DMSITS DMSOVS
DMSITS DMSOVR
DMSCIT DMSCYR
DMSCIT DMSITS
DMSCIT DMSOVR
DMSCIT DMSITE
DMSASN DMSBOP
DMSEDX DMSEDX
DMSEDI DMSEDX
DMSGRN DMSLDR
DMSEAB DMSDOS
DMSFCH DMSSTG
DMSSVYT

DMSSVT

DMSSTG DMSSVT
DMSCIT DMSCRD
DMSCIT DMSCWR
DMSABN DMSINS
DMSABN DMSDBG
DMSITP DMSSAB
DMSBAB DMSDOS
DMSDOS

DMSAMS DMSERB
DMSEAB DMSDOS
DMSDOS DMSVSR
DMSITP DMSSTG
DMSITP

DMSBAB DMSDOS
DMSBOP DMSBRD
DMSLBM DMSMDP
DMSLDR DMSLIO
DMSDOS DMSFCH
DMSDLK DMSDSL
DMSFRE

DMSLDS

DMSDOS

DMSDOS DMSFCH
DMSEXT DMSINT
DMSEXT

DMSLBM DMSSBS
DMSLDR DMSOLD
DMSDBG DMSFRE
DMSINS DMSITS
DMSASHM DMSITS
DMSLDR DMSLOA
DMSDBD

DMSOVs
DMSOVR
DMSOVsS
DMSITS
DMSBTP

DMSLIO
DMSITP

DMSCWR
DMSSVN
DMSITP
DMSITP
DMSSLN
DMSITP

DMSEOP
DMSITP

DMSITP
DMSEBWR
DMSMVE
DMSOLD
DMSFET
DMSFCH

DMSSET

DMSSOP

DHSITS
DMSLELR
DMSLDR

LMSOVS
CMSOVR
LCMSCIT

LMSOLD

LMSCHT

LCMSSAB
LESSTG

CMSCLS

LCMSVYSR

CMSCLS
CMSRNE

CMSLDS

CHSSHN

LCMSSQS

LCMSQRY
CMSMOD
CMSMOD

DMSCVsS
DMSCPY

DMSITE

DMSSVT

DMSDOS

DMSDIO
DMSSOP

DMSNCP

DMSSTG

DMSSVT

DMSSFT
DMSSLN
DMSSLN

DMSDLK

DMSSVN

DMSITE

DMSDLK
DMSSYT

DMSRCS

DMSVSR

DMSEDI

DMSSET

CHSDMP
DMSTIO

DI{SSBS

DMSFLL

DMSDSV
DMSUPD

DMSSEE

DMSLIO

CMSEDI

DMSSOP

LMSRNE

CMSEDX

CMSTHA

CMSEXC

DMSINT

@oUeI9Jo9Y¥ SSOI) STNPOR-03-Taqe'T

S9TI0IDDITA SHD

€Z2¢-¢

LABEL

PRINTLST
PROCERR
PROTFLAG
PRVCNT
PS

PSAVE
PSW

PTR1
PTR2
PTR3
PUBADR
PUBCUU
PUBDEVT
PUBDSKH
PUBPT

PUBTAPM1
PUBTAPM2
PUBTAP7
PUNCHLST
PWAIT
QQDSK1
QQDSK2
QQTRK

0s
QSWITCH
RA

RALD
RANGE
RDBUFF
RLCBUFLN
RDBUFNO
RDCCW
RDCONS
RECOUNT
REDATA
READ

READBLK
READBUF
READCNT
REALLST
REALTIMR
RECS
REDERRID
REFCMD

COUNT

000001
000004
000020
000012
000019
000011
000003
000015
000038
000008
000017
000013
000044
000002
000017

000005
000016
000001
000001
000001
000007
000007
000006
000003
000003
000047
000005
000012
000002
000001
000001
000001
000001
000004
000027
000044

000003
000031
000015
000002
000006
000002
000005
000004

REFERENCES

DMSSEB
DMSGRN
DMSASH
DMSLDR
DMSDSL
DMSITP
DMSLDR
DMSEDI
DMSEDI
DMSEDI
DMSBOP
DMSBOP
DMSBOP
DMSLLU
DMSAMS
DMSSRY
DMSBOP
DMSBOP
DMSBOP
DMSSEB
DMSPIO
DMSACHM
DMSDIO
DMSDIO
DMSNCP
DMSCRD
DMSDLK
DMSLBT
DMSEDI
DMSSEB
DMSNCP
DUSACP
DMSSEB
DMSINI
DMSPRV
DMSINI
DMSBOP
DMSTPE
DMSROS
DMSLDR
DMSBRD
DMSDLK
DMSIOW
DMSEDX
DMSCHR
DMSLDR

DMSLKD
DMSDBG
DMSOLD
DMSFCH

DMSEDX
DMSEDX
DMSEDX
DMSCLS
DMSCLS
DMSCLS
DMSXCP
DMSASN
DMSXCP
DMSCLS

DMSDIO

DMSTQQ
DMSSOP
DMSINT

DMSLGT

DMSRRV
DMSPRY
DMSBRD

DMSSVT
DMSLGT
DMSEXT
DMSSEB
DMSITE

DMSINT
DMSCLD

DMSYRE
DMSHVE
DMSSCR
DMSSCR
DMSDLK
DMSDLK
DMSDLK
DMSBOP

DMSXCP

DMSFNS

DMSLIB

DMSSEB
DMSRRY
DMSCLS

DMSLIEB
DMSFCH
DMSSVN

DMSQRY

CMSINS
DMSROS
DMSUPD
CMSUPD
CHEDSY
LMSDSYV
DMSLLU

LCHSCLS

CMSFOR

DMSSRY
CHSSRV
CMSCHP

TMSNCP

CMSSET

DMSITS

DMSSBD

DMSLLU
DMSLLU
DMSXCP

DMSDLB

DMSITI

DMSDIO

DMSOLD

DMSLDR

DMSSBS

DMSPRV
DMSPERV

DMSDLK

DMSNUC

DMSDLE

DMNSMOD

DMSSCT

DMSXCP
D¥SXCP

DMSDSV

DMSDSK

DMSCRY

DMSSEER

DMSFCH

DMSLSL

DMSSET

DMSSOP

DMSLLU

DMSDSY

DMSSLN

DMSSQS

CMSPRY

CMSFCH

DMSSVN

DMSRRYV

DMSRDC

DMSSVT

DMSSET

DMSSBS

8ouUsI®JayY SSOID STRPON-03I-Taqe]

C oEnToA--UOT}RUTEISISQ Weiboxg pue o1boT wa3Isks OLE/HA WET hZz-z

LABEL

REFLG1
REFLG2
REFLIB
REFURD
REGSAY
REGSAVX
REGSAVO
REGSAV1
REGSAV3
REG13SAV
RELPAGES

RELPHSE
REPCNT
RESET

RETREG
RETRYBIT
RETSAV
RETT
RFIX
RFPRS
RGPRS
RGPR11
RGPR8
RITEM
RLDCONST
RLING
RMSGBUF
RMSROPEN
RNUM
RPLACB
RPLAREA
RPLARG
RPLASY
RPLRUFL
RPLCHAIN
RPLECR?2R
RPLEOFDS
RPLFDBKC
RPLFLAG
RPLIST
@PLKEYL
RPLNUP

COUNT

000008
000004
000006
000004
000025
000007
0000630
000012
000036
000003
000020

000002
000010
000103

000009
000002
000006
000005
000001
000001
000007
00000z
000001
000007
000008
000002
000011
0600001
000002
000003
000001
000001
000002
000001
00C006
000004
000001
000003
000004
000005
000001
000001

REFERENCES

DMSLDR
DMSLDR
DMSLDR
DMSLDR
DMSZEDI
DMSEDI
DMSACF
DMSACF
DMSBRD
DMSLDR
DMSABN
DMSSTG
DMSFCH
DMSEDI
DMSACC
DMSDLK
DMSLDS
DMSSRY
DMSTIO
DMSSAB
DMSDBG
DMSLSB
DMSLGT
DMSOVsS
DMSINS
DMSITS
DMSQVS
DMSLBT
DMSLDR
DMSLEGT
DMSINT
DMSEOP
DMSLGT
DMSVIP
DMSVIP
DMSVIP
DMsSVIP
DMSVIP
DMSVIP
DMSVIP
DMSVIP
DMSvVIP
DMSVIP
DMSEDI
CMsSVIP
DMSYIP

DMSOLD
DMsSOLD
DMSOLD
DMSOLD
DMSINS

DMSACH
DMSERS
DMSBWR
DMSOLD
DMSANMS
DMSUPD

DMSEDX
DMSAMS
DMSDSL
DMSLSB
DMSSVYT
DMSLDR

DMSVIP

DMSITS

DMSLGT
DMSOLD
DMSLIB

DMSLIB

DMSRDC

DMSUPD

DMSALU
DHMSRNM
DMSENS

DMSARN

DMSARN
DMSDSY
DMEMVE
DMSTPE
DESLET

DMSOVS

DMSLIB

CMSVSR
LCMSAUL
LKsSMOD

CHSARX

CMSARX
CMSEDIX
DMSOLD
DMSUPD
DKSOLT

DMSSET

DHMSLAD
DMSPNT

DMSASH

DHSASM
DMSFLD
DMSCPT
DESVIB

DMSLFS
DMSSTT

DMSCPY

DMSECE
DMSFOR
DMSPRY
DM¥SVIE

DHSEDI

DMSBTE
DHSIFC
D¥SRRV
DMSZAP

DMSINT

DHSETP
CHSITE
CMSSAE

DMSLEM

CMSBWR
DMSITP
C¥SSCT

CHESLBT

DMSCLS
DMSLEM
CMSSET

CMSLKD

CMSCPY
LCMSLBT
DMSsoP

DMSSRT

DMSDLB
DHSLDR
DMSSRT

9OU31939Y SSOI) BTNPON-03}-TOqeT]

3091Td SO

SaTI0

GZt-¢

LABEL

RPLOPT1
RPLOPT2
RPLRLEN
RPLRTNCD
RPLST
RPLETRID
RPLUPD
RPLYLERR
RSTNPSW
RUN
RWCCW
RWCNT
REFSTRG
RWMFD

RO

R1

R10

COUNT

000004
000001
000001
000006
000002
000001
000001
000001
000002
000003
000003
000004
000009
000010
002423

006574

001820

REFERENCES

DMSVIP
DMSVIP
DMSVIP
DMSVIP
DMSVIP
DMSVIP
DMSVIP
DMSVIP
DMSDBG
DMSCLS
DMSDIO
DMSACF
DMSAUD
DMSACH
DMSABN
DMSBAB
DMSCPY
DMSDSL
DMSENC
DMSINI
DMSLBT
DMSLSY
DMSPRT
DMSSBS
DMSSTG
DMSUPD
DMSABN
DMSBAB
DMSCPY
DMSDSL
DMSENS
DMSINM
DMSLDR
DMSMDP
DMSPIO
DMSSAB
DMSSRY
DMSTRK
DMSACC
DMSBOP
DMSDBG
DMSEXT
DMSINS
DMSLFS
DMSPIO
DMSSCR

DMSGRN

DMSAUD
DMSBRD
DMSAUD
DHSACC
DMSBOP
DMSCRD
DMSDSV
DMSFNS
DMSINM
DMSLDR
DMSMDP
DMSERV
DMSSCN
DMSSTT
DMSVIB
DMSACC
DMSBOP
DMSCRD
DMSDSV
DMSFOR
DMSINS
DMSLDS
DMSMOD
DMSPNT
DMSSBD
DMSSSK
DMSTYP
DMSACF
DMSBRD
DMSDIO
DMSFCH
DMSINT
DMSLGT
DMSPRT
DMSSET

DMSMOD
DMSBWR

DMSACF
DMSBRD
DMSCHR
DMSEDC
DMSFOR
DMSINS
DMSLDS
DMSMOD
DMSPUN
DMSSCR
DMSSVN
DMSVIP
DMSACF
DMSBRD
DMSCHR
DMSEDC
DMSFRE
DMSINT
DMSLFS
DMSMVE
DMSPRT
DKSSBS
DKSSTG
DMSUPD
DMSACH
DMSBTP
DMSDLB
DMSFLD
DMSIOW
DMSLIO
DMSPRV
DMSSMN

DMSFNS

DESACH
LMSBTB
DMSCWT
DMSEDI
DMSFRE
DMSINT
DMSLFS
CMSMVE
CHMSQRY
DK¥SSCT
DMSSVT
DMSVPD
CMSACH
DMSBTB
CMSCWTI
DMSEDI
DMSGIO
DMSIOW
DMSLGT
CMSNCP
DMSPRV
DMSSCN
DMSSTT
CMSVIB
DMSALU
CMSBWR
DMSDOS
DMSFNS
DMSITE
DMSLKD
DMSPUN
DMSSOP

DMSALU
DMSBTP
DMSDBD
DMSEDX
DMSGIO
DMSIOW
DMSLGT
DMSNCP
DMSRDC
DMSSEB
DMSSYN
DMSVSR
DMSALU
DMSBTP
DMSDBD
DMSEDX
DMSGLB
DMSITE
DMSLIB
DMSOLD
DMSPUN
DMSSCR
DMSSVN
DMSVIP
DMSAMS
DMSCIO
DMSDSL
DMSFOR
DMSITI
DMSLLU
DMSQRY
DMSSQS

DMSAMS
DMSBWR
DMSDBG
DMSERR
DMSGLE
DMSITE
DMSLIE
DMSCLD
DMSREA
DMSSET
DMSTIC
DMSXCE
DMSAMNS
DMSBVWR
DMSDEG
DMSERR
DMSGNT
DMSITI
DMSLIC
DMSCPL
DMSCRY
DHSSCT
DMSSVI
DNSVPLD
DMSARE
DMSCLS
DMSDSV
DMSFRE
DMSITE
DMSLSE
DMSRDC
DMSSRV

DMSARE
DMSCAT
DMSDIO
DMSERS
DMSGND
DMSITI
DMSLIO
DMSOPL
DMSRNE
DESSMN
DHSTHMA
LMSZAP
DESARE
DMSCAT
D¥SDIO
CMSERS
CKESGRN
DMSITP
DMSLKD
DiUSOPT
DMSRDC
DMSSEB
DMSSYN
CMSVSR
DMSARN
DMSCMP
DMSEDC
DMSGIOC
DMSITS
DMSLST
DHMSRNE
DMSSTG

DMSARN
DMSCIC
DMSDLE
DMSEXC
DMSGRN
DMSITF
DMSLKT
DHMSOET
DMSRNM
LMSSCP
LMSTED

DMSARN
DMNSCIO
LMSLCLE
DMSEXC
DMSHLI
DMSITS
DMSLLU
DMSCR1
CMSREA
DMSSET
DMSTIC
DASXCE
DMSARX
CHMSCPF
CMSELI
DESGEN
DMSLAT
DMSHKCL
DMSRNM
DMSSTT

DMSARX
DMSCIT
DMSDLK
DMSEXT
DMSHDI
DMSITS
DMSLLU
DHSOR1
DMSROS
DMSSQS
CHSTPE

DMSARX
DMSCIT
DMSDLK
DMSEXT
DMSHLS
DMSLAL
DMSLOA
DMSOR2
DMSRNE
DMSSHMN
DMSTMA
DMSZAP
DMSASH
DMSCPY
DMSEDX
CMSHDI
DMSLBM
DMSHMVE
DMSROS
DMSSVN

DMSASHM
CMSCLS
DMSDMP
DMSFCH
DMSHDS
DCMSLAD
DHSLOA
DMSOVR
DMSRRV
CMSSRT
DMSTQQ

DMSASM
CMSCLS
DMSDMP
CMSFCH
DMSIFC
DMSLAF
DMELSB
DMSOR3
CMSRNN
CMSSOP
DMSTPD

DMSASN
CMSCWR
DMS ERR
DNSHDS
DMSLBT
DMSNCP
DMSRRV
DHMSSVT

DUSASN
DHSCHP
DHSDOS
CHSFET
DMSIFC
DMSLAF
CMSLSE
LMSOVS
DMSSAB
DMSSRV
PMSTRK

DMSASN
CMSCHMP
DMSDOS
CMSFET
DMSINA
CMSLBM
CMSLST
CMSOVR
DMSROS
DMSSQS
CMSTPE

DMSAUD
DMSCHT
CMSERS
DMSINY
CMSLDR
LMSOLD
CMSSAB
DMSTHMA

DMSAUD
DMSCPF
DMSDSK
DHMSFLD
DMSINA
DMSLBM
DMSLST
DMSPNT
DMSSBYD
DMSSSK
DMSTYP

DMSAUD
DMSCPF
DMSDSK
DMSFLD
DMSINY
DMSLBT
DMSLSY
DESOVS
DMSRRV
DMSSRT
DMSTQQ

DMSBAER
DMSDED
DMSEXC
DMSINM

DMSLDS _

DMSOPT
DMSSBD
DHSTPD

90UDIdJ2Y SS0ID °TNPOH-03I-TogeT]

9¢e-¢

7 sunjop--UoTIeRUTWIS}®Q Weiboid pue o1boq me3lsks QLE/HA WAUI

LABEL

11

R12

R13

R4

R15

COUNT

000746

000716

000828

003284

005371

REFERENCES

DMSTPE
DMsSACC
DMSERD
DMSDLB
DMSGRN
DMSLDR
DMSOPT
DCMSSBS
DMSTPE
DMSABN
DMSBAB
DMSCPY
DMSERS
DMSHDS
DMSLDR
DMSXNCP
DMSPRY
DMSSCR
DMSSVT
CMSVSR
DTMSABRN
DMSBRD
DMSDOS
DMSFOR
DMSITI
DMSLSB
DMSREA
DMSSTT
DMSABN
DMSEAB
DMSCPY
DMSEDC
DMEFRE
DMSINT
CMSLFS
DMSMVE
DMSQRY
DMSSCT
DMSSVT
DMSVPD
DMSABN
DMSEAB
DMsCPY
DMSEDC
DMSFRE
DMSINT

DMSTRK
DMSACF
DMSETP
DMSDOS
DMSINI
DMSLDS
DMSPIO
DMSSCR
DMSTOQQ
DMSACC
DMSBOP
DMSCRD
DMSEXC
DMSIFC
DMSLDS
DMSOLD
DMSPUN
DMSSCT
DMSSYN
DMSXCP
DMSACC
DMSETP
DMSDSK
DMSFRE
DMSITP
DMSLST
DMSRNE
DMSSYN
DMSACC
DMSBOP
DMSCRD
DMSEDI
DMSGIO
DMSIOV
DMSLGT
DMSNCP
DMSRDC
DMSSEB
DMSSYN
DMSVSR
DMSACC
DMSBOP
DMSCRD
DMSEDI
DMSGIO
DMSIOW

DMSTYP
DMSACK
DMSBUR
DMSDSY
DMSIKS
DMSLFS
DMSPNT
DMSSCT
DMSTRK
DMSACF
DMSRRD
DMSCWR
DMSFCH
DMSINI
DMSLFS
DNMSOPL
DMSQRY
DMESET
DMSTIO
DMSZAP
DMSACF
DMSBWR
DMSDSV
DMSGIO
DMSITS
DMSMOD
DMSRNM
DMSSVT
DMSACF
DMSERD
DMSCHWR
DMSEDX
DMSGLB
DMSITE
DMSLIB
DMSOLD
DMSREA
DMSSET
DMSTIO
DMSXCP
DMSACF
DMSBRD
DMSCWR
DMSEDX
DMSGLB
DMSITE

LMSUPD
DKSALU
CHsCIO
DMSERS
DMSINT
CMSLIB
DMSPRT
TMSSER
DMSUPD
CMSACHM
DMSBTE
LMSCWT
DMSFET
DMSINS
DMSLGT
CMSOPT
LMSREA
DMSSMN
DMSTMA

LCMSACH
LMsSCIOo
IMSEDC
DMSGLB
DMSLAD
DMSMVE
CMSSAB
DMSTIO
CHMSACH
CMSBETB
CMSCWT
TCMSERR
DNSGWD
DMSITI
CMSLIO
CMSOPT
CMSRNE
DMSSHN
CMSTMA
DMSZAP
CMSACH
DMSBTE
CMSCWT
DMSERR
LMSGND
DMSITI

DMSVIP
DMSANMS
DMSCLS
DMSEXC
DMSICW
DMSLIO
DMSPUN
DMSSET
DMSVIP
DMSALU
DMSBTP
DMSDIO
DMSFLD
CMSINT
DMSLIB
DMSOR1
DMSRNE
DMSSOP
DMSTPD

DMSALU
DMSCIT
DMSEDT
DMSGRYN
DMSLAF
DMSNCP
DMSSBS
DMSTPE
DMSALU
DMSRETP
DMSDBD
DMSERS
DMSGRY
DMSITP
DMSLKD
DMSOR3
DMSRNM
DMSSOP
DMSTPD

DMSALU
DMSBTP
DMSDBD
DMSERS
DMSGRN
DMSITP

DMSXCE
DMSARE
DMSCHME
DMSFCH
DMSITE
DMSLKLC
DMSCRY
DMSSOE
DMSVYPL
DMSAMS
DMSBWE
DMSDLE
DMSFNS
DMSITE
DMSLKL
DMSCR2
DMSENE
DMSSQsS
DMSTPE

DMSAMS
DMSCLS
DMSEDX
DMSHDI
DMSLBT
DMSOLD
DMSSCR
DMSTQC
DMSAMS
DMSBWR
DMSDBG
DESEXC
DMSHDI
DMSITS
DMSLLU
DMSOVR
DMSROS
DMSSQS
DMSTPE

DMSAMS
DMSEWR
DMSDRG
DMSEXC
DMSHDI
DMSITS

LMSZAP
DMSARY
DMSCPY
DMSFLD
DESITY
DMSLLU
DMSRDC
DMSSCS
DMSXCP
DMSARE
DMSCAT
DMSDME
DNMSFOR
LMSITI
DMSLLU
DMSOR3
DMSROS
CHMSSRT
DMSTCQ

DMSARN
D¥SCPY
DMSERR
CHSHDS
DMSLDR
DMSOVS
LMSSCT
DNSTRK
CMSARE
DMSCAT
DESDIO
DMSEXT
DMSHDS
DMSLAD
DMSLOA
DHMSOVS
DMSRRY
DMSSRT
DHSTQQ

DMSARE
DMSCAT
DMSDIO
DMSEXT
DMSHDS
DMSLAD

JMSARX
IMSCRD
OMSFNS
PMSITFE
2MSLSE
JMSRNM
LMSSVT
LMSZAP
DMSARN
DMSCIC
LMSTCsS
DMSFRE
DMSITE
DMSLCA
DMSCVR
DMSRRV
DMSSRV
LMSTRK

I'MSARX
DMSCRT
DMSERS
DMSIFC
ILMSLTLS
DMSFEIO
I:MSSEPR
I'MSUPD
IMSARN
LMSCIC
I'MSCLE
IMSFCH
LMSIFC
LMSLAF
LMSLSE
LMSFEIC
LMSSAR
LMSSRY
LCMSTRK

CMSARN
LMSCIC
CYSDLE
DMSFCH
DMSI¥C
DMSLAF

DMSASH
DMSCWR
DMSFOR
DMSITS
DMSLST
CMSROS
DMSSYN

DMSARX
DMSCIT
DMSDSL
DMSGLE
DMSITS
DMSLSE
DMSOVS
DMSSAER
DMSSSK
DMSUPL

CMSASHM
DMSCWR
DMSEXC
DMSINI
LMSLFS
DMSPNT
DMSSMN
DMSVIP
DMSARX
DMSCIT
LMSDOS
DMSFET
DMSINA
DMSLBM
DMS™.ST
DMSPNT
DMSSBD
DMSSSK
DMSTYP

DMSARX
DMSCIT
DMSDOS
DMSFET
DMSINA
DMSLEHM

CMSASN
CMSCWT
CHMSFRE
DMSLAF
CMSKOT
DMSRRV
LMSTIO

CMSASM
DMSCLS
CHMsSDsv
DMSGND
CMSLAL
DMSLST
DMSPIO
DMSSBD
DMSSTG
CMSVIE

CMSASN
LCMSDBG
CMSFCH
CMSINS
DMSLGT
DMSPRT
DMSsoP
DMSVSR
DMSASH
DMSCLS
CMSDSK
CMSFLT
DMSINI
CMSLBT
DMSLSY
DMSPRT
DMSSRS
LMSSTG
DMSUPL

CMSASHM
CMSCLS
DMSDSK
DMSFLD
DMSINI
DHSLBT

CMSAUD
CMSDED
CMSGLE
DMSLEM
LHMSNCP
DMSSAB
LMSTMA

DMSASN
DMscCyP
CMSEDX
DMSGRN
DMSLAF
DMSMOD
DMSPNT
DMSSES
DMSSTT
DMSVIP

DMSAUD
DMSDIO
DMSFLD
DMSINT
DMSLIB
CMSPUN
DMSSQS
CMSXCP
DMSASN
Luscup
DMSDSL
DMSFNS
CMSINM
DMSLLCR
CMSMDP
DMSPRV
DMSSCN
DMSSTT
DMSVIB

DMSASN
DMSCHP
DMSDSL
DMSFNS
DMSINK
DMSLLDR

DMSBOP
DMSDIO
DMSGND
DMSLBT
DMSOLD
DMSSBD
DMSTPD

DMSAUD
DMSCPF
DMSERR
DMSHDI
CMSLBT
DMSMVE
DMSPRT
DMSSCHN
DMSSVN
DMSVPD

DMSBAER
DMSDLB
DMSFNS
DMSITE
DMSLIO
DMSQRY
DHSSTG
DMSZAP
LMSAUD
DMSCPF
DMSDSV
DMSFOR
DMSINS
DMSLDS
DMSMOD
DMSPUN
DMSSCR
DMSSVN
DMSVIP

DMSAUD
DYSCPF
DMSDSV
DHSFOR
DMSINS
DMSLDS

@OUBI9J8Y SSOID S[LPOU-03I-T[8QeT

IODITA SKD

seTIo

Lzz-¢

LABEL

R2

R3

RY

R5

COUNT

003771

003780

002961

003094

REFERENCES

DMSLFS
DMSMVE
DMSPUN
DMSSCR
DMSSVN
DMSVIP
DMSABN
DMSBAB
DMSCPY
DMSDSV
DMSFOR
DMSINS
DMSLFS
DMSOPL
DMSRNM
DMSSOP
DMSTPE
DMSABN
DMSEAB
DMSCPY
DMSEDC
DMSGIO
DMSITE
DMSLIO
DMSOVS
DMSSAB
DMSSRV
DMSUPD
DMSABN
DMSBAB
DMSCPY
DMSDSV
DMSFRE
DMSINT
DMSLGT
DMSOVR
DMSRRY
DMSSRV
DMSTYP
DMSABN
DMSBAB
DMSCRD
DMSEDC
DMSFRE
DMSINT
DMSLGT

DMSLGT
DMSNCP
DMSCRY
DMSSCT
DMSSVT
DMSVPD
DMSACC
DMSBOP
DMSCRD
DMSEDC
DMSFRE
DMSINT
DMSLIO
DMSOPT
DMSROS
DMSSQS
DMSTQQ
DMSACC
DMSBOP
DMSCRD
DMSEDT
DMSGLB
DMSITI
DMSLKD
DMSPIO
DMSSBD
DMSSSK
DMSVIB
DMSACC
DMSBOF
DMSCRD
DMSEDC
DMSGIO
DMSIOW
DMSLIO
DMSQVS
DMSSAB
DMSSSK
DMSUPD
DMSACC
DMSBOP
DMSCHWR
DMSEDI
DMSGIO
DMSIOW
DMSLIB

DMSLIB
DMSOLD
DMSRDC
DMSSEB
DMSSYN
DMSVSR
DMSACF
CMSBRD
DMSCHWR
DMSEDI
DMSGIO
DMSIOW
DMSLKD
DMSOR1
DMSRRY
DMSSRT
DMSTRK
DMSACF
DMSBRD
DMSCWR
DMSELX
DMSGND
DMSITP
DMSLLU
DMSPRT
DMSSBS
DMSSTG
DMSVIP
DMSACF
DMSBRD
DMSCHR
DMSEDI
DMSGLB
DMSITI
DMSLKD
DMSPIO
DMSSBD
DMSSTG
DMSVIP
DMSACF
DMSERD
DMSDBD
DMSEDX
DMSGLB
DMSITI
DMSLKD

DMSLIO
TCMSOPL
CMSREA
DMSSET
DMSTIO
DMSXCP
CMSACH
CMSBTB
CMSDBD
DMSEDX
CMSGLB

. DMSITE

CMSLLU
LHSPIO
LCMSSAB
DMSSRV
CMSTYP
CMSACH
CMSBTB
LMSDBD
DMSERR
DMSGRN
DMSITS
CMSLSB
CMSPRYV
CMSSCN
DMSSTT
CHMSVPD
L¥SACH
CLMSETB
CMSDBD
DHSEDX
DMSGND
DMSITP
DMSLLU
CMSPNT
LMSSBS
DMSSTT
CMSVPT
DMSACH
CMSBTB
DMSDBG
DMSERR
DMSGND
DMSITP
CMSLLU

DMSLKD
DMSOPT
DMSRNE
DMSSMN
DMSTHMA
DMSZAP
DMSALU
DMSBTP
DMSDBG
DMSERR
DMSGND
DMSITP
DMSLORA
DMSPENT
DMSSBD
DMSSSK
DMSUPD
DMSALU
DMSBTP
DMSDBG
DMSERS
DMSHDI
DMSLAD
DMSLST
DMSPUN
DMSSCR
DMSSVN
DMSVSR
DMSALU
DMSETP
DMSDBG
DMSERR
DMSGRN
DMSITS
DMSLSB
DMSPRT
DMSSCN
DMSSVN
DMSVSR
DMSALU
DMSBTP
DMSDIO
DMSERS
DMSGRN
DMSITS
DMSLSB

DMSLLU
DMSOR
DMSRNE
DMSSOE
DMSTPLD

DMSANS
DMSEWR
DMSDIC
DMSERS
DMSGRN
DMSITS
DMSLSE
DMSPRI
DMSSBS
DNSSTG
DMSVIE
DMSAMS
DMSBWR
DMSDLE
DMSEXC
DMSHDS
DMSLAF
DMSMDE
DMSCRY
DMSSCT
DMSSVT
DMSXCE
DMSAMS
DMSBHWR
DMSDIC
DMSERS
DMSHDI
DMSLAD
DMSLST
DMSPUN
LMSSCR
DMSSVI
DMSXCE
DMSAMS
DMSEWR
LMSDLE
DMSEXC
DMSHDI
DMSLATD
DMSLST

DMSLOA
DMSOVR
DMSROS
DMSses
DF¥STPE

DMSARE
DMSCAT
DMSDLE
DMSEXC
CMSHDI
DMSLAD
DMSLST
DNSPRV
DMSSCN
DUSSTT
DMSVIP
D¥SARE
DMSCAT
DMSDLK
DMSEXT
DMSIFC
DMSLBM
DMSMOD
DMSRDC
DMSSEB
DESSYN
DMSZAP
DMSARE
DMSCAT
DFSDLE
DNSEXC
DMSHDS
DMSLAF
DMSMDP
DMSQRY
DMSSCT
DMSSYN
DMSZAP
DMSARE
DMSCIO
DMSDLK
DMSEXT
DMSHDS
DMSLAF
DM¥SMOD

DMSLSE
DMSQVS
CMSRRV
DMSSRT
TMSTCC

DMSARN
DMSCIC
DMSTLK
CMSEXT
DNSHDS
DMSLAF
DMSHKDE
DMSPUN
DMSSCR
DMSSVN
CMSVED
LCMSARN
DMSCIC
DMSCUP
DMSFCH
DMSINA
CMSLET
DMSMVE
CMSRER
DMSSET
DMSTHMA

DMSARN
DMSCIC
DMSCLK
DMSEXT
LMSIFC
DMSLEN
DMSkCD
DMSRIC
DMSSET
DMSTHEA

CMSARN
DMSCIT
DMSDME
DMSFCH
DMSIEC
DMSLEM
DMSMVE

DMSLST
CMSPIO
CMSSAE
DMSSRV
CMSTRK

DMSARX
DMSCIT
DMSDMP
DMSTCH
DMSIFC
DMSLBM
DMSMOT
DMSQRY
DMSSCT
CH¥SSVT
DMSVSR
DMSARX
DMSCIT
DMSDOS
CKSFET
DMSINI
CMSLDR
DMSNCP
CMSRNE
DMSSMN
DMSTPT

DMSARX
DMSCIT
DMSDME
DMSFCH
CMSINA
DMSLET
DMSMVE
DMSREA
DMSSHN
DNSTPT

DMSARX
DMSCLS
DMSDOS
DMSFET
CMSINA
DMSLET
DMSNCP

DMSLSY
CMSPNT
DMSSBL
DMSSSK
DMSTYP

LCMSASHM
CMSCLS
DMSDOS
CMSFET
DMSINA
CMSLET
CMSMVE
DMSRLC
CMSSER
DMSSYN
Lusxce
DMSASH
LCHSCLS
DMSDSK
CMSFLLT
DMSINM
CMSLLS
DMSOLLD
DMSRNM
DMSSOP
DMSTPE

THSASH
CMSCLS
DMSDOS
CMSFET
DUSINI
DMSLDR
THSNCP
DMSRNE
DHSSOP
DMSTPE

DMSASM
DMSCHMP
CMSDSK
CMSFLT
CMSINI
CMSLDR
DMSOLD

DMSMDP
CMSPRT
DMSSEBS
CMSSTG
DMSUPD

DMSASN
CHSCHP
DMSDSK
CMSFLD
DMSINI
CMSLLR
DMSNCP
DMSREA
CMSSET
CMSTHA
DHNSZAP
CMSASYN
LMSCHP
CMSDSL
DMSFOR
DMSINS
DMSLFS
CMSOPL
DMSROS
LMSSQS
DMSTRK

DMSASN
DMSCHP
CMSDSK
DMSFLD
DMSINM
DMSLLS
CMSOLD
DMSRNM
D¥SSQS
DMSTQQ

DMSASN
LMSCPF
DMSDSL
CMSFNS
DMSINY
DMSLTDS
CMSOPL

DMSHOD
DMSPRV
IMSSCN
DMSSTT
DMSVIB

DMSAUD
DMSCPF
DMSDSL
DMSFNS
DMSINH
DMSLDS
DMSOLD
DMSRNE
DMSSKN
DMSTPD

DMSAUD
DMSCPF
DMSLSV
DMSFRE
DMSINT
DHUSLGT
DMSOVR
DMSRRV
DMSSRT
DMSTYP

DMSAUD
DMSCPF
DMSDSL
DMSFOR
DMSINS
DMSLFS
DNSOPL
DMSROS
DMSSRT
DMSTRK

DMSAUD
DMSCPY
DMSDSYV
DMSFOR
DMSINS
DMSLFS
DMSORY

90U9I3J9Y SS0ID oTupoN-o3-Taqe]

8ece-¢z

¢ emnloA--UOTIRUTEIS]D] weiboxg pue o1hoT wa3ysis QLE/WA RWEI

LABEL

R6

R7

R8

R9

SAVCNT

SAVCWD
SAVE

COUNT

002670

002449

002110

001869

000005

000022
000015

REFERENCES
DMSOVR DMSOVS
DMSRRYV DMSSAB
DMSSRV DMSSSK
DMSUPD DMSVIB
DMSABN DMSACC
DMSBAB DMSEOP
DMSCWR DMSDBD
DMSEDX DMSERR
DMSGRN DMSHDI
DMSLAD DMSLBM
DMSHMOD DMSMVE
DMSQRY DMSRDC
DMSSCT DMSSET
DMSTMA DMSTPD
DMSABN DMSACC
DMSBOP DMSBRD
DMSDBG DMSDIO
DMSERS DMSEXC
DMSHDS DMSIFC
DMSLBM DMSLBT
DMSMVE DMSOLD
DMSRNM DMSROS
DMSSTG DMSSVT
DMSXCP DMSZAP
DMSABN DMSACC
DPMSBAB DMSBOP
DMSCRD DMSCHWR
DMSEDI DMSEDX
DMSGRN DMSHDI
DMSLAD DMSLBM
DMSNCP DMSOLD
DMSRRYV DMSSAB
DMSSVYN DMSSVT
DMSZAP

DMSABN DMSACC
DMSBAB DMSBOP
DMSCWT DMSDBD
DMSERR DMSERS
DMSHDI DMSHDS
DMSLBHM DMSLBT
DMSOLD DMSOPL
DMSSCR DMSSCT
DMSTPE DMSTRX
DMSEDI DMSSCR
DMSEDI

DMSCHMP DMSEDI

DMSPIO
DMSSED
DMSSTG
DMSVIP
DMSACF
DMSERD
DMSDBG
DMSERS
DMSHDS
DMSLBT
DMSNCP
DMSREA
DMSSHMN
DMSTPE
DMSACF
DMSBTP
DMSDLB
DMSEXT
DMSINA
DMSLDR
DMSOPL
DMSRRV
DMSSYN

DMSACF
DMSBRD
DMSDED
DMSERR
DMSHDS
DMSLBT
DMSOPL
DMSSBD
DMSSYN

DMSACF
DMSERD
DMSDEG
DMSEXC
DMSIFC
CMSLDR
DMSPIO
DMSSET
DMSTYP

DMSGRN

DMSPNT
DMSSBS
DMSSTT
LMSVPD
DMSACH
CMSBTP
DMSDIO
CMSEXC
DMSIFC
DMSLDR
CHSOLD
DMSRNE
DMSSOP
DMSTQQ
CHMSACH
LMSBWR
CMSDLK
CMSFCH
CMSINI
CMSLDS
CMSOVR
CMSSAB
DMSTMR

DESACHM
CMSBTB
LMSDBG
CMSERS
CMSIFC
LMSLDR
LMSOVR
LCMSSBS
CMSTMA

LMSACHM
CMSBTP
LCMSLIO
TMSEXT
TMSINA
C¥SLDS
CMSPRT
DMSSHMN
C¥SUPD

CMSLBT

DMSPRT
DMSSCN
DMSSVN
DMSVSR
DMSALU
DMSBWR
DMSDLB
DMSEXT
DMSINA
DMSLDS
DMSOPL
DMSRNM
DMSSQS
DMSTRK
DMSALU
DMSCIO
DMSDMP
DMSFET
DMSINS
DMSLFS
DMSOVsS
DMSSBD
DMSTIPD

DMSALU
DMSETP
DMSDIO
DMSEXC
DMSINA
DMSLDS
DMSQVS
DMSSCN
DMSTPD

DMSALU
DMSBWR
DMSDLB
DMSFCH
DMSINI
DMSLFS
DMSPUN
DMSSOP
DMSVIP

DMSNCP

DMSPUN
DMSSCR
DMSSVT
DMSXCE
DMSAMS
DMSCIC
DMSDLK
DMSFCH
DMSINI
DMSLFS
DMSOR1
DMSROS
DMSSRT
DMSTYP
DMSANMS
DMSCIT
DMSDOS
DMSFLD
DMSINT
DMSLGT
DMSPIC
DMSSCN
DMSTPE

DMSANS
DMSBWR
DMSDLE
DMSEXT
DMSINI
DMSLTS
DMSPIC
DMSSCT
DMSTPE

DMSANS
DMSCIT
DMSDLK
DMSFLL
DMSINS
DMSLGT
DMSCRY
DMSSRV
DMSVPeL

DMSRDC

DMSQRY
DMSSCT
D¥SSYN
DMSZAP
DMSARE
DMSCIT
DMSDMP
DMSFET
DMSINS
DMSLGT
DMSOVR
DMSRRY
DHSSSK
D¥SUPD
DMSARE
DMSCLS
DMSDSK
DMSFNS
DMSIOW
DMSLIB
DMSERT
DF¥SSCR
DMSTRK

DMSARE
DMSCIO
CHMSDLK
DMSFCH
DMSINM
DMSLGT
DMSPRT
DESSEB
DMSTRK

DMSARE
DMSCLS
DMSDOS
DMSFNS
DMSINT
DMSLKD
DMSRDC
DMSSSK
DKSXCP

DMSRIC
LMSSET
LMSTMA

LMSARN
LMSCLS
LMSCCS
LMSFLL
CMSINT
LMSLKC
DMSCVS
LMSSAER
LMSSTG
LMSVIP
TMSARN
DMSCHP
LCMSLSY
DMSFOR
CMSITE
DMSLKL
TMSPUN
DMSSCT
DMSTYP

DMSARN
DMSCIT
LMSICS
LCMSFLL
LMSICW
CMSLLU
LMSPUN
CMSSET
CMSTYE

CMSARN
DMSCMP
CMSLSK
CMSFCR
CMSICH
DMSLSE
DMSRNM
DMSSTG
DMSZAP

DMSREA
DMSSHMN
DMSTPD

DMSARX
DMSCHMP
DMSDSK
DMSFNS
DMSIOW
DMSLLU
DMSPIO
DMSSED
DMSSTT
DMSVPD
DHMSARX
DMSCPF
DMSEDC
DMSFRE
DMSITI
DMSLLU
DMSQRY
DMSSET
DMSUPL

DMSARX
DMSCLS
DMSDSK
DMSFNS
DMSITE
DMSLSE
DMSQRY
DMSSHUN
DMSUPD

DMSARX
DMSCPF
DMSDSV
DMSFRE
DMSITI
DMSLST
DMSROS
DMSSTT

DMSRNE
DMSSOP
DMSTPE

DMSASHM
DMSCPF
DHESDSV
DMSFOR
DMSITI
DMSLOA
DMSPNT
DMSSBS
DMSSVN
DMSVSR
DMSASHM
DMSCPY
CMSEDI
DMSGLB
DMSITP
DMSLSB
DMSRDC
DMSSHN
DMSVIP

CMSASH
DMSCMP
LMSDSL
DMSFOR
DMSITI
DMSLST
DMSRDC
DMSSOP
CMSVIP

CMSASH
DMSCPY
DMSEDC
LMSGIO
CHMSITP
DMSMOD
DMSRRV
CHMSSVT

DMSRNM
DMSSQS
DMSTRK

DMSASN
DMSCPY
DMSEDC
DMSFRE
DMSITP
CHSLSB
CMSPRT
DMSSCN
DMSSVT
DMSXCP
DMSASN
DMSCHWR
DMSEDX
DMSGRN
DMSITS
DMSLST
DMSREA
DMSSOP
DMSVPD

DMSASN
CMSCPF
CMSDSV
CMSFRE
DHMSITP
DMSMOD
CMSRNN
DMSSSK
DMSVSR

CUSASN
CMSCRD
DMSEDY
DMSGND
DMSITS
CMSMVE
CNSSAB
DMSTMA

DMSROS
DMSSRT
DMSTYP

DMSAUD
DMSCRD
DMSEDI
DMSGND
DMSITS
DMSLST
DMSPUN
DMSSCR
DMSSYN
DMSZAP
DMSAUD
DMSDBD
DMSERR
DMSHDI
DMSLAD
DMSMOD
DMSRNE
DMSSQS
DMSVSR

DMSAUD
DMSCPY
DMSEDC
DUMSGLB
DNSITS
DMSMVE
DMSROS
DMSSTG
DMSXCP

DMSAUD
DUMSCHWR
DMSEDX
DMSGRN
DMSLAD
DHMSNCP
CMSSBD
DMSTPD

80U3I9J9Y SS0ID STNPOR-03 -TaqR T

3091TQ SHD

s9TI0

6Z2-7

LABEL

SAVEADT
SAVEAR
SAVERESS
SAVERO
SAVER1
TAVER10
SAVER 14
SAVER15
SAVER2
SAVESIZE
SAVEXT
SAVE1
SAVE2
Save?
SCAW
SCBPTR
SCBSAV12
SCBWORK
SCLNO
SCRBUFAD
SCRFLGS
SCRFLG2
SDISK
SEARCH
SEBSAV
SECTNUN
SEEK
SEEKADR
SENCCW
SENSB
SENSE
SEQYAME
SERSAV
SERTSEQ
SERTSW
SETLIB
SETSEC
SETUP
SETUP2
SF
SFLAG
SFNUC
SFREN
SFSYS
SFTAN
SIGNAL

COUNT

000002
000010
000040
000021
000048
000002
000059
000013
000011
000001
600002
000020
000021
000006
000003
000015
000004
0000086
000002
000002
000036
000019
000005
000035
000009
000006
000037
000013
000002
000008
000019
000004
000002
000003
000003
000002
000002
000013
000002
€00007
000009
000002
000001
000005
000002
000057

REFERENCES
DMSTIO

DMSEDC DMSSCR
DMsasH DMSROS
DMSDSVY DMSIFC
DMSIFC DMSREA
DMSTMA

DMSIFC DMSREA
DMSIFC DPMSREA
DMSREA DMSVIP
DMSZAP

DMSDLB DASITE
DMSBOP DMSTBD
DMSBOP DMSLCEG
DMSLDR DMSOLD
DMSLRG DMSITE
DMSITP DMSSAE
DMSSAB

DMSSAR DMSSTG
DMSSCR

DMSEDX DMSSCR
DMSEDI DMSSCR
DMSEDI DMSSCR
DMSALU DMSINI
DMSFCH DMSINI
DMSSBD DMSSEB
DMSACH DMSDIO
DMSDSV DMSFCH
DMSACH DMSDIC
DMSDIQ DNSPIO
DMSACH DMSDIO
DMSBOP DMSCLS
DMSEDI DMSEDX
DMSEDT

DMSEDI

DMSEDI

DMSLIRB

DMSINI

DMSSAB

DMSSAB

DMSDLK DMSDSL
DMSITS

DMSITS

DMSITS

DMSITS

DMSITS

DMSACH DMSEDI

DMSRERA
DASSOP

DMSSCT
DMSSOP

DMSDEG
DMSTFC

DMSSLN

DMSINS
DMSLIEB

DMSYNS
DMSINI
DMSTNS

DMSTNS
DMSYFOR

DMSFCH

DMSERS

CNSVIP
CMSTPE

CMSSEB

C¥SDSL

CMSSTG

CMSNUC
LMSLST

LMSFOR
CMSOPL
LMSFOR

CMSFOR
CMSPRYV

LMSNCP

DMSVIP

DMSTPE

DMSRRVY

DMSSVT

DMSHMOD

DMSITI
DMSPRYV
DMSITI

DMSITI
DMSRRY

DMSVIE

DMSSRY

DMSPRYV

DMSNUC
DMSROS
DMSNUC

DMSNUC
DMSSRV

DMSQRY

DMSRRV

DMSRRV

CMSSET

CMSSET

DMSSRV

CMSSRV

CHMSXCP

DMSSVT

20US19J3Y SS0I) °TOUPOR-D3I-TeqeT]

0€C-2

Z SWNTOApA--UOTIRUTEI®}®Q wexboid pue o1boT ®e3shs QLE/WA WII

LABEL

SILI
SIZE
SKEY
SKIP
M
SOB1
SPARES
SPEC
SPECLF
SPIESAV
SSAVE

SSAVENXT
SSAVEPRV
SSAVESZ
STACKAT
STACKATL
STAEBIT
STAESAV
STAIBIT
“TARS
START
STATEFST
STATERO
STATER1
STIMEXIT
STOP
STOPAT
STRTADDR
STRTNO
SUBACT
SUBFLAG
SUBINIT
SUBREJ
SUBSECT
£VC$202
SVCAB
SVCoPSH
SVCOUNT
SVCSAVE
SVCSECT
SVCsSTOP
SVC12S5AvV
SVEARA
SVEPSH
SVEPSH2

COUNT

000209
000022
000003
000010
000001
000002
000015
000198
000002
000002
000060

000004
000008
000006
000002
000005
000003
000002
000002
000001
000023
000022
000003
000005
000009
000006
000002
000034
000005
000604
000028
000001
000003
000004
000004
000008
000026
000003
000012
000021
000001
000004
000007
000007
000008

REFERENCES
DMSDBD DMSDBG
DMSFRE DMSLEKD
DMSFRE DMSSBD
DMSROP DMSEXT
DMSERR

DMSOPT DMSSET
DMSEDI DMSEDX
DMSLDR DMSLGT
DMSINS DMSINT
DMSINT

DMSABN DMSACC
DMSLDR DMsSOVsS
DMSITS

DMSITS DMSSAB
DMSITS

DMSEDI

DMSEDI

DMSSAB

DMSINT

DMSSAB

DMSINT

DMSFET DMSFNC
DMSALU DMSBRD
DMSBRD DMSSOP
DMSDSK DMSERS
DMSITE DMSSTG
DMSTPD

DMSDBG

LCMSFET DMSITS
DMSEDI DMSRNE
DMSEDX DMSINT
DMSABN DMSEDX
DMSTINS

DMSEDX DMSINT
DMSABN DMSINM
DMSEXT

DMSFRE DMSITS
DMSITS

DMSITS DMSOVs
DMSITS

DMSCIT DMSFRE
DMSITS

DMSDOS

DMSBAB DMSDOS
DMSBAB DMSDOS

DMSEAB

DMSDOS

DMSFOR

DMSROS

DMSUPD
DMSLIB

DMSEAB
DMSSAB

DMSVIP

DMSFOR
DMSERS
DMSSTT

DMSSVN
DMSLELR
DMSLOA

DMSEXT

DMSINT

DMSHDS

DMSITP
DMSITP
DMSITP

CMSINI

CMSSRT

CMSOLT

TMSDBG
DMSSLN

C¥SGRN
CMSFNS

DMSSVT

CMSLOA

CMSSLN
CMSFNS

CMSINT

DMSINS

DMSXCP

DNSDLR
DMSSHMN

DMSITS
DMSGND

DMSLSB

DMSINT

DMSITE

DMSITE

DMSECS
DMSSOE

DMSLDER
DMSINT

DMSMOL

DMSLOA

DMSITS

LMSNUC

DMSERR
DMSSTG

DMSLSE
DMSPUN

DMSOLD

DMSMOD

DNSLAD

DMSFIC

CMSFLL
DMSSVN

DMSCVS
DMSRNM

DMSSET

JMSSLN

CMSLFS

CMSTIO

DMSFRE
DMSSVT

DMSTYP
DMSSTT

DMSSLN

DMSOVR

CHSXCP

CMSITC
CHSVIP

DMSQVS

CMSITP
CMSXCP

DMSSLN

DMSITS

80U2I9J8Y SS01] STNpoH-03-T3qe1T

LeZ-¢

S8T10309ITQ SHD

LABEL

SVEROF
SYEROO
SVERO1
SVERO9
SVLAD
SVLADW
SVLFS
SWTCH
SWICHSAV
SYMTABLE
SYMTBG
SYSADDR
SYSCODZ
SYSCOM
SYSLINT
SYSLOAD
SYSNAME
SYSMAMIS

SYSNEND

SYSREF
SYSTEM
SYSTEMID
SYSUT1
TABEND
TABLIN
TABS
TAIEIAD
TRIEMSGL
TAIERSAV
TAPE
TAPEBUFF
TAPECOUT
TAPEDEV
TAPELIST
TAPEMASK
TAPEOPER
TAPISIZE
TAPE1
TAPLL
TAXFADDR
TAXEDEF
TAXEEXTT
TAXEEXTS
TAXEFREQ

COUNT

000004
000015
000001
000009
000006
000003
000006
000001
000002
000003
0n000L
000003
000005
000617
000003
000010
000006
000037

000014

000004
000012
000005
000027
000007
000016
000023
000002
000001
000002
000017
000001
000002
000003
000003
000003
000010
000002
000002
000002
000010
000001
000002
000001
000006

REFERENCES

DMSBAB
DMSEAB
PMSBAB
DMSBAB
DMSLAD
DMSLAD
DMSLIS
DMsSACHM
DMSINT
DMSDBG
DMSDEG
DMSINI
DMSIDLB
DMSBAER
DMSDLK
DMSACH
DMSETP
DMSAMS
DMSVSR
DMSAMS
DMSVSR
DMSINS
DMSASN
DMSINI
DMSARX
DMSFLD
DMSEDI
DMSEDI
DMSCIT
DMSCIT
DMSCIT
DMSCLS
DMSSEB
DMSSEB
DMSSBS
DMSSBS
DMSSBS
DMSSBS
DMSSLB
DMSASN
DMSASN
DMSCIT
DMSSVT
DMSCIT
DMSCIT
DMSCIT

DMSDOS
DMSDOS

DMSDCS

DMSFRE
DMSBOP
DMSQRY
DMSINS
DMSINS
DMSBOP

DMSEOP

DMSLOA
DMSDLB
DMSINS
DMSASM
DMSZAP
DMSSCR
DMSEDX

DMSLLU

DMSSEB
DMSSERB
DMSSEB
DMSSEB

DMSITE
DMSSVT

DMSITE

DMSITP

DMSITP

DMSSET
DMSDOS
DMSSET
DMSLDR
DMSBTP
DMSPTP

DMSSET
TCMSMOD

DMSDLK

DMSSER

DMSSOP
DMSSOP
DNSSOP
DMSSOP

DMSITI

DMSITI

CMSFET

CMELSB

LHMsDOsS

LMSDOS

CMSSET

CESLDR

LCMSTIO

CHSSTCG

DMSITP

DMSCLD

DMSEDX

DMSEDX

DMSSLN

DMSLKD

DMSTMA

DMSSVT

DMSCRY
DMSSET
DMSEXC

DMSEXC

DESSSK

DMSCLLD

DMSTPE

DHUSSTG

DMSINS

DMSINS

DMSXCP

DHSXCP

CMSSYN

DMSINT

DMSINT

CMSITS

CMSITS

CMSQRY

DMSQRY

DMSSFT

DMSSET

DMSVIB

DMSVIRB

20UdI2J9Y SS01D OINPOH-03I-Toqe]

(AX AT

Z oWNTOA--UOTIRUTEII}ISQ meiboid pue o1boT waisis Qre/HA RAI

LABEL

TAXEIOL
TAXEIOWS
TAXELNK
TAXERTNA
TAXESTAT
TAXETAIE
TAXETSOF
TBENT
TBLCT
TBLEND
TBLLNGTH
TBLREF
TCODE
TEMPBYTE
TEMPSAVE
TEMPST
TEMPTAB
TEMPO2
TEXT

TEXTA

TEXT3
TIC
TIMBUF
TIMCCH
TIMCHAR
TIMER
TIMINIT
TIN
TMPLOC
TOOBIG
TOTLIBS
TOUT
TPFACB
TPFERT
TPFNS
TPFRO1
TPFSVO
TPFUSR

COUNT

000003
000002
000006
000002
000005
000002
000002
000028
000019
000004
000005
000020
000001
000003
000014
000008
000004
000002
000553

000058

000001
000054
000013
000005
000024
000016
000011
000004
000008
000003
000003
000004
000004
000003
000009
000002
000005
000011

REFERENCES
DMSCIT DMSITI
DMSCIT

DMSCIT DMSITE
DMSCIT

DMSCIT DMSITE
DMSCIT

DMSCIT

DMSACH DMSBTB
DMSLDR DMSLIB
DMSDBD DMSDBG
DMSSBD DMSSVT
DMSLDR DMSLIB
DMSFRE

DMSSVT

DMSBOP DMSUPD
DMSLDR DMSOLD
DMSEDI

DMSITS

DMSABN DMSACC
DMSBWR DMSCIT
DMSDMP DMSDOS
DMSFOR DMSGLB
DMSLIO DMSLKD
DMSOVS DMSPRV
DMSSMN DMSSRT
DMSVIP DMSVPD
DMSACC DMSAMS
DMSOVS DMSEIO
DMSSVT

DMSDSV DMSFCH
DMSEXT DMSINM
DMSITE DMSQRY
DMSINS DMSINT
DMSINS DMSINT
DMSINS DMSINT
DMSEDI DMSEDX
DMSLDR DMSLSB
DMSDIO

DMSGLB DMSSHN
DMSEDI

DMSsOP

DMSITS

DMSITS

DMSITS

DMSDOS DMSITS
DMSDBG DMSITP

DMSITI

DMSITI

DMSFET
DMSOLD
DMSITE

DMSOLD

DMSACHM
DMSCLS
DMSDSK
DMSGND
DMSLLU
DMSQRY
DMSSRY
DMSXCP
DMSBWR
DMSPRT

DMSINI
DMSSVT
DMSSET
DMSIOW
DMSIOW
DMSIOW

DMSOLD

DMSOVS
DHSITS

DMSSVT

CMSGNL

CMSNUC

DMSAMS
DMSCMP
DMSDSL
DMSGRN
CESLOA
LMSRDC
DMSSSK
DHMSZAP
LMSCIO
CMSPUN

DMSOPL
LCMSITE

CMSITE
DHSITE

CHsSvIP
CMSLDR

DMSLDR

DMSARE
DMSCPY
DHSDSV
DMSIFC
DMSHDP
DMSREA
DMSSTT

DMSDLK
DMSSVT

DMSPRV

DMSNUC
DMSSET
DMSSET

DNMSSAB

DMSLOA

DMSARN
DMSCRL
DMSEDI
DMSINS
DMSKOD
DMSRNE
DMSSYK

DMSIDOS
DHMSUPL

DMSRRYV
DMSCRY

DMSSVN
DMSSVN

DMSHDP

DMSARX
DMSCWR
DMSEDX
DMSITS
DMSMVE
DESRNM
DMSTHMA

DUSERS

DMSSET

DMSSET
DMSSVT

DMSKCE

DMSASH
DMSLED
DMSEXC
DMSLEM
LMSNCE
DHMSRCS
LCMSTEL

LESGRYN

LMSSEV

LMSSHN

DMSOLL

DMSASN
DMSDEG
DMSFCH
CMSLET
CHSOPL
DMSRRV
DESTPE

DMSLEM

DMSXCP

DMSSTG

CMSSET

DMSBOP
DMSLIO
CMSFET
DMSLDR
CHSOPT
DMSSCR
DMSTYP

DMSLET

CHMSSVN

CHYSSLN

CMSBTB
CMSDLE
CMSFLD
DMSLDS
CMSOR1
CHSSET
DMSUPD

DMSLST

DMSSVT

DMSETP
DMSDLK
DMSFNS
DMSLGT
DMSOVR
DMSSLN
CMSVIE

DMSMOD

8JUs1IdJay SS01) 3TUpPON-O}-~-T8GeT

3033TQ SHD

seT10

€E€Z-C

LABEL

TRAP
TRKLSAVE
TRNCNUN
TRNCODE
TRUN
TRUNCOL
TSOATCNL
TSOBLKS
TSOFLAGS
TSYM
TVERCOL1
TVERCOL2
TWITCH
TXLIBSV
TXTDIRC
TXTLIBS
TYPE

TYPEAD
TYPFLAG
TYPFLG
TYPLIN
TYPLIST
TYPPUN
TYPRDR
TYPSCR
TYP1403
TYP2305
TYP2311
TYP2314
TYP2401
TYP2415
TYP2420
TYP2501
TYP25u40P
TYP2540R
TYP3203
TYP3210
TYP3211
TYP3277
TYP3278
TYP3330
TYP3340

COUNT

000002
000002
000006
000001
000001
000016
000017
000001
000017
000005
000002
000001
000088
000004
000009
000005
000092

000001
000034
000002
000040
000007
000001
000001
000009
000002
000001
000001
000006
000002
000001
000002
000001
000001
000001
000002
000001
000002
000001
000001
000005
000004

REFPERENCES

DMSFNC
DMSTQQ
DMSEDI
DMSFRE
DMSOR1
DMSEDI
DNMSCIT
DMSSET
DMSCIT
DMSDBG
DMSEDI
DMSEDI
DMSEDI
DMSGLB
DMSGLB
DMSGLB
DMSACC
DMSDIO
DMSFRE
DMSLIB
DMSSCR
DMSLIO
DMSDBG
DMSEDI
DMSEXT
DMSEXT
DMSPUN
DMSRDC
DMSEDX
DMSASN
DMSINI
DMSINI
DMSASN
DMSASN
DMSASN
DMSASN
DMSASN
DMSASN
DMSaSN
DMSASN
DMSINI
DMSASN
DMSEDX
DMSEDX
DMSBOP
DMSASN

DMSITE

DMSEDX
DHMSCRD

DMSCRD

DMSEDX

DMSIFC
DMSIFC
DMSACF
DMSDLK
DMSIFC
DMSLIO
DMSSEB

pLED]
DMSFNC
DMSITE

DMSSCR
DMSPRT

DMSEOP
DMSTPR

DMSTPE

DMSPRT

DMSPRT

DMSTIO
DMSBOP

DMSSCR
DMSITE

DMSITE

DMSSCR

DMSLDR
DMSLGT
DMSACH
DMShHMP
DMSINA
DMSLOA
DMSSET

DMSITP

DMSLET
DMsSTMA

DMSIIO

DMSDOS
DMSDOS

DMSITI

DMSITI

CMSLGT
LCMSLIB
LCMSAUL
DMSDSK
DMSINS
DMSLSB
DMSsopP

LMSITS

CHMSLIO

DMSINI

CHSINY
CMSINT

DMSITS

DMSITS

DMSLIB
DMSQRY
DMSBOP
DMSDSYV
DMSINT
DMSLST
DMSSVT

DMSLDR

DMSTYP

DMSSEE

DMSSEE

DMSOLD

DMSBRL
DMSEDI
DMSITE
DMSOPL
DMSSYN

DMSOVS

CMSSVN

DMSSVN

DMSBTB
DMSEDX
DMSITP
DNSOR1
D¥SUPD

DMSSAB

DMSEWR
DMSERS
CMSITS
DMSOVR
DMSVIE

DMSSCP

DMSCAT
DHSEXC
DMSLAD
DMSOVS
DMSVIP

DMSVIE

DMSCLS
DMSFLD
CMSLAF
LCMSRNE
DMSXCP

LKSCHP
DNSFNS
LCHSLFS
DMSROS
CMSZAP

DMSCPY
DMSFOR
DMSLGT
DMSSAE

®0U2I9J9¥ SSOID STNPOR-03-[oqeT

hee-z

7 emnfoA--UotjRUTEIA}SQ Weiboig pue o1boT we3sks QLE/WA WAI

LABEL

TYP3350
TYP3420
TYP3525
UCASE
UE
UFDBUSY

UND
UNPACK
UNRES
UPBIT
UpPsSI
UPTMID
UPTSHWS
USARCODE
USAVE
USAVEPTR
USAVES?Z
USERCODE
USERKEY
UTILFLAG
VAR
VCADTLKP

VCADTL¥Y%
VCADTNAT
YCESTLKP
VCFSTLKW
VERCOL1
VERCOL2
VERLEN
VIPINIT
vVipsop
VIPTCLOS
VIRTUAL

VHMCOMP
VMDISP
VMDISP1
VHMSIZE

VSAMFLG1
VEAMRUN

VEAMSERY
VSAMSOS

COUNT

000007
000003
000001
000003
000001
000045

000019
000013
000005
000006
000004
000002
000002
000002
000003
000025
000005
000004
000012
000020
000033
000029

000007
000009
000005
000004
000009
000004
000007
000009
000008
000004
000021

000002
000004
000005
000041

000051
000010

000015
000000

REFERENCES
DMSEOP DMSDIO
DMSASN DMSTPE
DMSASN

DMSCRD

DMSCIT

DMSABN DMSACC
DMSFNS DMSITE
DMSROS DMSSES
DMSCPY DMSEXT
DMSLDR DMSLOA
DMSACH DMSAUD
DMSSET

DMSSET

DMSSET

DMSFRE

DMSITS

DMSITS DMSSAB
DMSITS

DMSFRE DMSSET
DMSABN DMSDBG
DMSEDI DMSSCR
DMSOR1 DMSROS
DMSACC DMSACHM
DMSILU DMSLST
DMSANS DMSARN
DMSACC DMSALU
DMSACC DMSDSK
DMSRNM DMSTPE
DMSEDI DMSEDX
DMSEDI DMSEDX
DMSEDI DMSEDX
DMSCLS DMSDOS
DMs30oP DMSCLS
DMSCLS DMSVIP
DMsACC DMSAMS
DMSQRY DMSSET
DMSDSY

DMSLSY

DMSDSY

DMSAMS DMSBOP
DMSSET DMSSSK
DMSABN DMSAMS
DMSVIB DMSVIP
DMSABN DMSBOP
DMSAMS DMSBAB
DMSABN DMSAMS

DMSDOS

DMSACF
DMSITI
DMSSEB
DMSLIO
DMSOLD
DMSDSK

DMSSLN

DMSFRE

DMSSED
DMSALU
DMSQRY
DMSEXT
DMSARE
DMSEDX

DMSSCR

DMSSCR
DMSEXT
DMSVIP

DMSARN
TMSSHMN

DMSERD
DMSSVT
DMSBAB
DMSVSR
DMSDOS
DMSBOP
DMSVSR

LMSINI

CMSACH
CMSITP
CMssop

CMSSOP

CMSITS

LHSSBS
LCHSARE
CMSRNH
CMSRNE
CHMSLDS
CESTPE

CMSINT

CMSBWR
DMSTHA

CMSBWR
CHSVIB
L¥sSBOP

CMSFCH
CY¥SCLS

DMSROS

DMSAUD
DMSITS
DMSSQS

DNSSTG

LMSLTR

DMSSEB
DMSASN
DMSSET
DMSSRT
DMSLST
DMSXCP

DMSSTG

DMSCTHMP
DMSTPD

DMSDBG
DMSCLS

DMSSTG
DMSDLB

DMSBTE
DMSRNE

DMSSVT

DMSSET
DMSSOE
DMSEOE
DMSSVI

DMSUPL
DMSQRY

DMSVIE

DMSDLE
DMSVTE

DMSDCS
DMSLCLE

DMSVIE
DMSDOS

DMSBY¥R
DESTPE

DMSSQS
DMSDIO
DMSUPD

DMSROS

DMSVSR

DMSEDX
DMSVIP

CMSFRE
LCMSDOS

DESYSR
DUSFCH

IIMSCIT

NMSSVT
TMSDLE
NKSXCP

CMSFCH
DMSVEL

DMSHLT

DMSEXT

DMSITP

DMSDIO

DHMSTPL
DMSDSL

TMSFENS
CMSZAP

DMSHDS

PMSFCH

DMSSTG

DMSDOS

DMSXCP
CMSEXT

DMSLEH

CMSINS

CMSINT

DNSVSR

CHMSDSK

DMSFOR

LMSLIO

DMSLDR

CHMSITP

DMSERS

DMSLDS

DMSNCP

DMSOVS

DPUSSTG

2oU919I9Y SS0I) OTNPOH-03 -T3qe1T

IO2ITA SHO

SoT10

T X A4

LABEL

YSJOBCAT
VSMINSTL
VSTRANGE
WAIT

WAITEND
WAITINGS
WAITLIST
WAITLST
WAITRD
WAITSAVE
WORKFILE
WRBIT
WRDATA
¥RITE
WRITE1
#RTKF
WTHM
¥TRLCNT
XAREA
XCOUNT
XGPRO
XGPR1
XGPR15
XPSW
XRSAVE
XXXCWD
XYCNT
XYFLAG
YAREA
YDISK
YYDDD
Y2
ZDISK
ZEROES
ZONE1
ZONE2

COUNT

000003
000005
000001
000033

000003
000003
000002
000003
000004
000007
000005
000012
000022
000028
000007
000003
000011
000002
000001
¢00002
000002
000001
000002
000013
000003
000042
000008
000003
000001
000003
000003
000001
000001
000014
000011
000016

REFERENCES

DMSDLB
DMSFCH
DMSITI
DMSABN
DMSPIO
DMSSVN
DMSVIP
DMSDBG
DMSCRD
DMSDBG
DMSCIT
DMSCLS
DMSACC
DMSINI
DMSEOP
DMSINI
DMSTIO
DMSBOP
DMSDBG
DMSEDI
DMSOVsS
DMSQOVS
DMSOVS
DMsSQVS
DMSDBG
DMSPIO
DMSEDI
DMSEDI
DMSEDI
DMSEDI
DMSINI
DMSINS
DMSSCR
DMSNUC
DMSINI
DMSEDI
DMSEDI

DMSFET

DMsSCIO
DMSSVT

DMSSVT
DMSCWR
DMSFNC
DMSDBG
DMSOLD
DMSBWR

DMSCLS

DHSCLS

DMSITE

DMSINS

DMSOR1
DMSEDX
DMSEDX

DMSCIT

DMSCHT
DMSFOR
DMSIOW

DMSDSK

DMSDIO

DMSTPE

DMSNUC

DMSROS

CMSCRD

CHSTPE

CMSDLK

DMSCWR

DMSCSL

DMSCWI

DMSINI

DMSDOS

DMSSBS

DMSENC

DMSTPE

DMSINI

DMSVPT

DMSINS

CMSITE

DMSITY

adousIejed SSO0I) STNPON-03I-Teqe]

2-236 1IBM VYM/370 System Logic and Program Deterzination--Volume 2

CMS Diagnostic Aids

This section contains the following information:

e A list of devices Supported by a CMS Virtual HMachine
e DMSFREX Error Codes

s Albend Codes

CMS Diagnostic iids 2-237

2-238 IBM VE/370 System Logic and Program Determination--Volume 2

Supported Devices

Figure 23 indicates those devices that are supported by a CMS
machine.

r 1
] virtual I Virtual | Symbolic | I
| IBM Device | Addresst| Name | Device Type |
| |
! 3210, 3215, 1052,1 cuun { CON1 | System console |
| 3066, 3270 [} { 1
| 2314, 3330, 3340 | 190 { DSKO | System disk (read-only) |
I 3350 { I | I
} 2314, 3330, 3340 i 1912 | DSK1 | Primary disk (user files) |
I 3350 l { | 1
| 2314, 2319, 3330, cuu { DSK2 | Disk (user files) |
{ 3340, 3350 l l I |
t 2314, 2319, 3330, cuu { DSK3 | Disk (user files) |
| 3340, 3350 | | | |
{ 2314, 2319, 3330,% 192 H DSK4 { Disk (user files) i
3340, 3350		I
2314, 2319, 3330, cuu	DSKS	Disk (user files)
3340, 3350		i
2314, 2319, 3330, cuu	DSK6	Disk (user files) \
3340, 3350 l		i
2314, 2319, 3330, cuu	DSK7	Disk (user files) 1
3340, 3350 t	{ I	
2314, 2319, 3330, 19E 1 DSKS8 { Disk (user files) {		
3340, 3350		i
2314, 2319, 3330, cuu	DSK9	Disk (user files) {
{ 3340, 3350 ({ i	
1403, 3203, 3211, 00E	PRN1 { Line printer	
{ 1443 i {		
2540, 2501, 3505	00C	RDR1
{ 2540, 3525	00D	PCH1 { Card punch I
{ 2415, 2420, 3410, 181-4	TAP1-TAPU	Tape drives i
I 3420 ! ! ! !		
1The device addresses shown are those that are preassembled into the		
i CHS resident device table. These need only be modified and a new i		
device table made resident to change the addresses. {		
2The virtual device address (cuu) of a disk for user files can be I		
any valid System/370 device address, and can be specified by the		
CMS user when he activates a disk. If the user does not activate !		
a disk immediately after loading CMS, CMS automatically activates		
the primary disk at virtual address 191.		
L]

Figure 23. Devices Supported by a CMS Virtual Machine

CMS Diagnostic Aids 2-239

DMSFREX Error Codes

Error Codes from DMSFREE, DMSFRES, and
DMSFRET

A nonzero return code upon return from DMSFRES, DMSFREE, or DMSFRET
indicates that the request could not be satisfied. Register 15 contains
this return code, indicating which error has occurred. The codes below
apply to the DMSFRES, DMSFREE and DMSFRET macros, described on the
following pages.

Code Error
1 (DMSFREE) Insufficient storage space is available to satisfy the
request for free storage. In the case of a variable request, the
minimum request could not be satisfied.

2 (DMSFREE or DMSFRET) User storage pointers destroyed.
3 (DMSFREE or DMSFRET) Nucleus storage pointers destroyed.

4 (DMSFREE) An invalid size was requested. This error exit is taken
if the requested size is not greater thanm zero. In the case of
variable requests, this error exit is taken if the minimum regquest
is greater than the maximum request. However, the error is not
detected if DMSFREE is able to satisfy the maximum request.

5 (DMSFRET) An invalid size was passed to the DMSFRET macro. This
error exit is taken if the specified length is not positive.

6 (DMSFRET) The block of storage that is being released was never
allocated by DMSFREE. This error occurs if one of the following
errors is found:

a. The block is not entirely inside either the low-core free
storage area or the user program area between FREELOWE and
FREEUPPR.

b. The block crosses a page boundary that separates a page
allocated for USER storage from a page allocated for NUCLEUS
storage.

c. The block overlaps another block already on the free storage
chain.

7 (DMSFRET) The address given for the block being released is not a
doublewcrd Loundary address.

8 (DMSFRES) An illegal request code was passed to the DMSERES
routine. Because the DMSFRES macro generates all codes, this
error ccde should never appear.

9 (DMSFRE, DMSFRET, or DMSFRES) Unexpected internal error.

2-240 IBM VM/370 System Logic and Program Determination--Volume 2

Abend Codes

Abend Recovery

Modules Used: DMSABN

Operation of the Abend Routine, DMSABK

When the abend recovery routine is entered, it types out the abend
message, follcwed by the line "CHMS®™, to indicate to the user that he may

type in his next command.
At this point, there are +two options available to the user.

First, he may type the DEBUG command. In this case, DMSABN passes
control to DMSDBG, to make the facilities of DEBUG available to hinm.
DEBUG's PSW and registers are as they were at the time that the abend
recovery routine was invoked. From DEBUG, the user may alter the PSW or
registers, as he wishes, and type GO to continue processing, or type
RETURN to return to DMSABN, so that abend recovery can continue.

The second option available is to type in any cther command. If this
is done, DMSABN performs its abend recovery function and passes control
to DMSINT to execute the command that has been typed in.

The abend recovery function consists of the following steps:

1. The SVC handler, DMSITS, 1is reinitialized, and all stacked save
areas are released.

2 WPINIS * * %% ig invcked by means of SVC 202, +t¢ close all files,

T
and to update the user file directory.

3. If the EXEC interpreter (EXECTOR module) is in storage, it is
released.

4. 21l 1link blocks allocated by the O0S macros simulation routine
DMSSLN are freed.

5. If VSAM cr Access Method Services are still active, call DMSVSR for
cleanup.

6. All FCB and DOSCB pointers are zeroed out.

7. All user storaje is released.

8. The amount of system free storage that should be allocated is
computed. This figure is compared against the amount of free
storage that is actually allocated. If the +two are equal, then

storage recovery can be considered successfal. If they are
unequal, then a message is sent to the user.

CMS Diagnostic Aids 2-241

UNRECOVERABLE TERMINATION —- THE HALT OPTION OF DMSERR

There are certain times, such as when the SVC handler's pointers are
modified, that the system can neither continue processing nor +try to
recover. In these cases, DMSERR with the option HALT=YES is specified
to cause a message to be typed out, after which a disabled wait state
PSW is loaded unless the NUCON field AUSERRST has been loaded.

The valid address contained in AUSERRST is assumed to be the address
of an error recovery routine and will be directly branched to. The
initialization routines of an application running under CMS must set
this address +to point to a module that might, for example, reguest a
dump and then issue an IPL command. If the IPL command is

IPL CMS PARM AUTOCR

and the PROFILE EXEC on virtual disk 191 invokes reinitialization, the
application has the <capability of automatic recovery. This capability
is valuable for CHMS service virtual machines that run permanently
disconnected and are reguired to stay operational.

In CP mode, the programmer can examine the PSW, whose address field
contains the address of the instruction following the call to the LMSERR
macro. He can also examine all the registers, which are as they were
when the DMSERR macro was invoked.

Figure 24 lists the CMS ABEND codes and describes the cause of the
Atend and the action required.

2-242 IBM ¥M/370 System Logic and Program Determination--Volume 2

L 1
| Abend| Module | | |
| Code | Name |} Cause of Abend | Action |
| {
| 001 | DMSSCT | The problem program encoun— | Kessage DMSSCT120S |
| | { tered an input/output error | indicates the possible |
! | | processing an 0SS macro. | cause of the error. |
{ I | Either the associated DCB | Examine the error |
] | { did not have a SYNAD rou- | message and take the |
{ | | tine specified or the I/0 | action indicated. {
| | | error Was encountered | |
1 | | processing an 0S CLOSE | |
| { | macro. 1 |
| |
i 034 | DMSVIP | The problem program encoun- | Refer to the DOS/VS |
{ { | tered am I/0 error while | Messages Reference, |
| | | processing a VSAM action | Order ©FKo. GC33-5379, |
! { | macro under DOS/VS for | to determine the cause !
| { { which there is no 0S equi- | of the VSAM error. |
| { | valent. An internal error | |
| i | occurred in a DOS VSAM rou- |]
i | | tine. { I
| 1
| OCx | DMSITP | The specified hardvare ex- | Type DEEUG to examine |
i i i ception occurred at a spe- | the PS¥ and registers |
| { | cified 1locaticn. "x* is | at the time of the |
{ | { the type of exception: | exception. !
| | | x Type { |
| [| O IMPRECISE | |
| ! | 1 OPERATION } !
{ | | 2 PRIVILEGED OPERATION { |
| | | 3 EXECUTE | |
{ | | 4 PROTECTION | (
l | | 5 ADDRESSING] |
| | | 6 SPECIFICATION | |
| { | 7 DECIMAL DATA | |
| | | 8 FIXED-POINT OVERFLOW | i
| | | 9 FIXED-POINT DIVIDE i]
| | | A DECIMAL OVERFLOW | |
| | | B DECIMAL DIVIDE | |
i | | C EXPONERT OVERFLOVW | |
H i i D EXPORERT URDERFLOW H H
| | { E SIGNIFICANCE | |
{ | | F FLOATING-POINT DIVIDE | |
{ |
OFO	DMSITS	Insufficient free storage	If the abend vas
	! is available to allocate a	caused by an error in	
		save area for an SVC call.	the application pro-
			gram, correct it; if
i I	{ not, use the CP DEFINE		
I	{ command to increase		
			the size of virtual
{			storage and then re-
1		start CHMS. i	
OF1	DMSITS	An invalid halfword code is	Enter DEBUG and type
{ } associated with SYC 203.	GO. Execution conti-		
I l	nues.		
L]
Figure 24. CMs Abend Codes (Part 1 of u)

CMS Diagnostic 1ids

2-243

r A
| Abend| Module |] |
| Code V' VName | Cause of Abend | Action |
| |
{ OF2 | DMSITS | The CMS nesting level of 20 | None. abend recovery |
| { | has been exceeded. | takes place when the |
| | | { next command 1is en- |
(| | | tered. {
| !
OF3	DMSITS	CMS SVC (202 or 203) in-	Enter DEBUG and type
		struction was executed and	GO. Control returms to
I	provision wvas made for an	the ©point to which a	
		error return from the <rou-	ncrmal Teturn would
{ { tine processing the SVC.	have been made.		
OF4	DMSITS	The DMSKEY key stack over—	Enter DEBUG and type
1 { flowed.	GO. Execution conti-		
	i ! nues and the DMSKEY		
!		macro is ignored.]	
I	I		
! OFS	DMSTTS ! The NMSKEY kev stack under—		
		flowed.	i
OF6	DMSITS	The DMSKEY key stack was	Enter DEBUG and type
	{ not empty when control re-.	GO. Control returns	
		turned from a command or	from the command or
	{ function.	function as if the key	
i			stack had been empty.
{ OF7	DMSFRE	Occurs vhen TYPCALL=SVC	When a system abend
i		(the default) is specified	occurs, use DEBUG to
		in the DMSFREE or DMSFRET	attempt recovery.
		macro.	I
OF8	DMSFRE	Occurs when TYECALL=BALR is	Khen a system abend
		specified in the DMSFREE or	occurs, use DEBUG to
{		DMSFRET Macro devices.	attempt recovery.
101	DMSSVN	The wait count specified in	Examine the progranm
		an 0S WAIT macro was larger	for excessive wait
i		than the number of ECBs	count specification.
		specified. l I	
l			
104	DMSVIB	The 0S interface to DOS/VS	See the additional er-
		VSAM is unable to continue	ror message accompany-
l		execution of the problem	ing the abend message,
		program.	correct the error, and
i		reexecute the program.	
155	DMSSLN	Error during LOADMOD after	See the last LORDMOD
		an OS LINK, LGAD, XCTL, or	(CMSMOD) error message
1 { ATTACH. The compiler switch	for error description.		
i	is on.	In the case of an I/0	
{	}	error, recreate the	
			module. If the module
{ {	is missing, create it.		
1]
Figure 24. CMS Abend Codes (Part 2 of 4)

2-244 IBM VM/370 System Logic and Program Determination--Vvolume 2

r 1
| Abend} Module | { |
| Code | Name | Cause of Abend | Action 1
{ i
f 154 | DMSSLN | Severe error during locad | See last LOAD error |
{ | | (phase not found) after an | message (DMSLIO) for |
! ! | 0S LINK, LOAD, ¥CTL, or | the error description. |
| | | ATTACH. The compiler switch | In the case of an I/0 |
i | | is on. | error, re-create the |
| | | | text deck or TXTLIB. |
| | | | If either is wmissing, |
| l | | create it. {
| 1
| 174 | DMSVIB | The 0S interace to DOS/VS | See the additional er- |
| | | VSAM is unable to continue | ror message accompany- |
i | i execution of the problem | ing the abend message, f{
| | | program. | correct the error, and |
! ! ! | reexecute the programs. |
i I
177	DMSVIB	The 0OS interface to DOS/VS	See the additional er-
	DMSYIP	VSAM is unable to continue	ror message accompany-
i { execution of the problem	ing the abend message,		
	{ progran.	correct the error, and	
			reexecute the program.
I i			
240	DMSSVT	No work area was provided	Check RDJFCB specifi-
{	in the parameter 1list for	cation.	
]	an 0S RDJFCB macro.		
!			
400	DMSSVT	An invalid or unsupported	Examine program for
		form of the 0S XDAP macro	unsupported XDAP macro
I		was issued by the problem	or for SVC 0.)
		program.	
{ i			
704	DMSSMN	An OS GETMAIN macro (SVC 4)	Change the program so
[was issued specifying the	that it specifies
		LC or LU operand. These	allocation of only one
		operands are not supported	area at a time.
		by CHMS.	
= T e e e e e e e e e e ———			
705	DMSSMN	An 0s FREEMAIN macro	Change the program so
i ! ! {SYC 5} was issued specify-	that it specifies the		
!	ing the L operand. This	release of only one	
1		operand is not supported by	area at a time.
		CHMs.	{
== e e e e e e e — - — - -1			
804	DMSSMN	An 0S GETMAIN macro (804 -	Check the program for
80A		SVC 4, 80A - SVC 10) was	a valid GETMAIN re-
		issued that requested ei-	quest. If more storage
		ther zero bytes of storage,	was requested than was
I	or more storage than was	available, increase	
i		available.	the size of the virtu-
			al machine and retry.
== e e e e e e e e e e			
905	DMSSHN	An OS FREEMAIN macro (905 -	Check the program for
I 902		SVC 5, 90a - svC 10) was	a valid FREEMAIN re-
		issued specifying an area	quest; the address may
		to be released whose ad-	have been incorrectly
i	{ dress was not on a double-	specified or modified.	
{	word boundary.		
[3
Figure 24. CMS Abend Codes (Part 3 of 4)

CMS Diagnostic Aids 2-245

Cause of Abend

Action

An O0S FREEMAIN macro (AO0S -
SvYC 5, AQOA - SVC 10) was
issued specifying an area
to be released which over-
laps an existing free area.

Check the program for
a valid FREEMAIN re-
quest: the address
and/or length may have
been incorrectly spec-
ified or modified.

bt e e c—— - — — —— —)

r
| Abend| Module |
{ Code | VNawe |
|

| R0S5 | DMSSHMRN |
| AOR | |
| | i
i | |
| | 1
{ | i
L

Figure 24,

2-246

CHS Abend Codes (Part 4 of 4)

IBM VM/370 System Logic and Program Determination--Volume 2

Appendix A: CMS Macro Library

The followin is a list and brief description of the CHS macros
applicable to Release 5.

Asterisk (*) indicates that the macro is reserved for IEM use.

CMS Macro

Function

*ADT
*ADTGEN

*ADTSECT
*AFT

*AFTSECT
BATLIMIT

*CMSAVE
*CHSCB
*CMSCVT

COMPSWT

*CORG
*DBGSECT
*DEVGEN

*DEVSECT
*DEVTLB
*DIAG
*DIOSECT
DISPW

DHMSABN
*DMSCCB
*DMSABY
*DMSDM
*DMSERR
*DMSERT

CMSEXS

DMSFREE

*DMSFRES
DMSFRET

*DMSFREX

*CMSFRT

*DMSFRY
DMSFST

Generates a CSECT or DSECT for an active disk table.

Generates an active disk table (ADT) for a disk; used by
ADTSECT.

Generates all the ADTs for CHMS.

Generates a DSECT for an active file table.

Generates all the AFTs for CMS.

Table of CPU, punch, and printer 1limits for user Jobs
running under CMS batch.

Equivalent to SVCSAVE macro.

Generates a list of simulated 0S control blocks.

Generates the communication vector table as supported by
CMS.

Sets the compiler switch on or off. Refer to YM/370 CHS
Commapd and Macro Reference.

Sets the origin for CSECT.

Generates a CSECT or DSECT for DEBUG environment variables.

Generates a device table for a given device; used by the
DEVTAB macro.

DSECT for a device table.

Generates the device tables for the CMS nucleus.

Issues a specified CP Diagnose instruction.

Generates a CSECT or DSECT for all I/0 information.

Generates the calling sequence for the display terminal
interface. Refer to YM/370 System Programeer's Guide.

ABEND the virtual machine. Refer to VM/370 Systenm
Programmer's Guide.

DSECT describes field of DOS command control block (CCR).
Refer to V¥M/370 Data Areas and Control Block Logic.

Alloccates a work area for DMSABN.

Reserved for IBM use.

Sets up parameter list to type out a CHMS error message;
Refer to the LINEDIT macro.

DMSERR work area DSECT.

Execute an instructicn without nucleus protection. Refer to
¥M/370 System Logic and Problem Determination Guide--Yolume
2.

Gets free storage. Refer to JVK/370 System Programmer's
Guide.

Calls system free storage service routines.

Releases free storage. Refer to ¥M/370 System Programmer's
Guide.

Calls system free storage service routines.

Generates a DSECT for free storage management work area.

Submacro called by DMSFRET.

Sets up a file status table for a given file. Refer to
VM/370 System Programmer's Guide.

Appendix A: CMS Macro Library 2-247

CMS Macro

Function

LMSKEY
*DMSLN
*DMSLNC
*DMSLND
*DMSLNP
*TMSLNU
*DMSLNY
*DMSLNZ
*DMSPID
*DMSTHMS
*EDCB
*EFQUATES
*EXCP
*EXTSECT
*FCB

FSCB
*FSCBD

FSCLOSE

*FSENTR
FSERASE

FSOPEN

*FSPOINT
FSREAD

FSSTATZE
*FSTB
*FSTD

FSWRITE
*FVS

*¥GETADT
*GETFST

HNDEXT

HNDINT

HNDSVC
*I0
*JOSECT

*KEYSECT
*KXCHK

*LDHX
*LDRST
LINEDIT

*NUCON

Sets nucleus protection on or off. Refer to V¥M/370 System
Logic and Problem Determinaticn Guide--Volume 2.

Called by DMSERR, LINEDIT macros.

Called by DMSERR, LINEDIT macros.

Called by DMSERR, LINEDIT macros.

Called by DMSERR, LINEDIT macTros.

Called by DMSERR, LINEDIT macros.

Called by DMSERR, LINEDIT macros.

Called by DMSERR, LINEDIT macros.

Passes a fileid in quotes into serarate filename, filetyrpe,
filemode, used by FSCB, and FSPOINT.

Used by RDTAPE, WRTAPE, and TAPECTL.

Frees storage contrel blocks initialized by DMSEDX for CHMS
edit modules.

Generates CMS equates for symbolic names.

Issues an SVC O.

Defines storage for the timer interrupt.

Generates a file control block (FCB) DSECT.

Sets up a file system control block. Refer to VM/370 CMS
DSECT that describes fields in CMS PLIST for related
commands.

Closes a file. Refer to JVM/370 CMS Command and Macro
Reference.

Used by CMS file system routines at entry.

Erases a file. Refer to ¥YM/370 CHS Command and Macro
Reference.

Opens a file. Refer to ¥M/370 CMS Command and Macro
Reference.

Executes the CMS POINT function.

Reads a record from a file. Refer toc ¥M/370 CMS Command and
Macro Reference.

Checks for an existing file. Refer to VN/370 CHES Command
and Macro Reference.

Generates a file status table (file directory) block.

Entry to the file status table (file directory) block.

Writes a record into a disk file. Refer to VM/370 CHS
Command and Macro Reference.

Defines storage for file system variables.

Gets a specified active disk table.
Gets a specified file status table.

Handles external and timer interrupts. Refer to VM/370 CMS
Compand and Macro Reference.

Handles interrupt on devices. Refer to VM/370 CHMS Command
and Macro Reference.

Handles SVCs. Refer to ¥M/370 CMS Command and Macro
Reference.

Contains PLISTs needed to access CMS I/O routines.
Defines miscellaneous I/G variables.

Contains variables necessary for storage key handling.
Checks to see if HX has been entered by the user.

Lcads double multiple (for floating roint registers).

CMS Loader work area.

Types a line to the terminal. Refer to ¥M/370 CMES Command
and Macro Reference.

Generates a DSECT CMS nucleus constant area.

2-248 IBM VM/370 System Logic and Program Determination--Volume 2

Function

CHMS Macro
*QVSECT
*QSFST
*PDSSECT
*PGMSECT
PRINTL

PUNCHC

RDCARD
RDTAPE
RDTERM
REGEQU
*RELPAGES
*STDM
STRINIT
*SUBSECT
*SVCENT
*SVCSAVE
*SVCSECT
*SYSLOAD
*SYSNAMES
TAPECTL
*TSOBLKS

*TSOGET

*USE

VO LAl S e

WAITD
WAITT
WRTAPE

WRTERM

DMSOVS work area.
Defines an 0S file status table for CS ACCESS.

DSECT used for processing MACLIB files.
Defines work area for DMSITP.
Prints a line on the printer.
and Macro Reference.
Punches a card. Refer
Reference.

Refer to YVH/370 CMS Command

to YM/370 CHS

Reads a card from the reader. Refer to
and Macro Reference.

Reads a record frocm tape.
Macro Reference.

Reads a record from the terminal.
Command and Macro Reference.
Generates symbelic register eguates.
Command and Macro Reference.

Sets the release pages flag.

Storage for multiple floating-point registers.

Initializes storage.
Reference.

CSECT or DSECT for CMS SUBSET use.

Issues a DMSKEY macro before calling an instruction.

System save area.

Defines work area for DMSITS.

Puts 1in a specified register
routine in NUCON.

Saves system names table loaded via CMS routines.

YE/370 CMS Compand

Refer tc YM/370 CMS Command and

Refer to YM/370 CHS

Refer to

the address of a specified

Positions a tape. Refer to ¥M/370 CMS Command and Macro
Reference.

Ccntains CPPL, UPT, PSCB, and the ECT for TSO service
routines.

Gets the address of the TSO command processor parameter list
{CPPL).

Generates assembler USING and DROP instructions, as needed.
Creates nger work area

Waits until the next interrupt occurs for the specified
device. Refer to VN/370 CHS Command and Macro Reference.

Waits until all pending I/0 to the terminal has completed.
Refer to ¥YM/370 CMS Command and Macro Reference.

Writes a record to tape. Refer to YM/370 CMS Command and
Macro Reference.
Writes a record to the terminal. Refer to VM/370 CHMS

Command and Macro Reference.

Appendix A: CMS Macro Library 2-249

2-250 1IBM VM/370 System Logic and Program Determination—--volume 2

Appendix B: CMS/DOS Macro Library

CMS, in this release, contains a DOS macro library with the following
significant entries. A more complete list may te obtained by invoking
the DOSMACRO EXEC; this EXEC produces a 1list of all the macros in the
DOS library.

Macro Function

CCB Generates the DOS/VS command control block.

COMRG Returns address of background partitions communication
region; expands to SVC 33.

EOQJ Normal processing termination; expands to S¥C 0.

OPENR Activates a data file; simulated by DMSOR1, DMSCR2, DMSOR3.

STYIT Provides/terminates supervisor 1linkage t0o user's prograa
check routines; simulated by DMSDOS.

IKQACB DSECT for VSAM ACB (access method control block).

IKQEXLST DSECT for ©VSAM EXLST control block (contains addresses of
user exit routines.

IKQRPL DSECT for VSAM RPL (reguest parameter list control block).

SYscoM DSECT of system communication region.

ABTAB DSECT of abnormal termination option table.

BEOX DSECT of Boundary Box; contains beginning and ending
addresses of background partitions communication region.

BGCOM DSECT of background communication region.

FICL DSECT, CMS/D0OS first in class table.

NICL DSECT, CMS/DOS number in class table.

PCTAB DSECT, program check option table.

PIB2TAB DSECT, program information block extension.

PIBTAB DSECT, program information block.

PUBORNER DSECT, physical unit block ownership table.

ANCHTAB DSECT, DOS/VS anchor table.

DOSAVE DSECT, describes fields in the logical transient area (LTA).

FCHTAB DOS/VS fetch table containing fetch/load parameter list.

MAPPUB DSECT defines fields of CKS/DOS physical unit block (PUB).

PUBTAB DSECT same usage as MAPPUB.

DOSCB DOS simulation control block used for the simulation of the

CHMS file control block (FCB).

EXCpu DSECT, work area for DMSICP routine.
LOSCON Creates CMS/DOS control blocks for DMSNUC.
LUBTAB DSECT for CMS/DOS logical unit block.

Appendix B: CMS/DOS Macro Library 2-251

2-252 1IBM VM/370 System Logic and Program Determination—--Volume 2

A
atend (see abncrmal termination (abend))
ABEND macro 2-39
abnormal termination (abend)
CMS
codes 2-241
recovery 2-241
dump (see also CHMS (Conversational
Monitor System), dump)
ACCESS command, accessing 0S data sets
2-45
access methcd, 0S, support of 2-u42
access mat+thodce

< acTiavia s

BDAM 2-113
BDAM/QSAM
BPAM 2-113
for ncn-CMS environments
0Ss 2-113
vysaM 2-113
CMS support for
accessing
a virtval disk, CMS 2-93
the file system 2-93
active disk and file storage management
2-93
Active Disk Table ({aDT} 2-93
used in disk management 2-93
Active File Table (AFT) 2-93
used in file management 2-93
ADT (see Active Disk Table (ADT))
AFT (see Active File Table (AFT))
allocated
free storage, types of 2-99
storage, releasing of 2-105
allocating, storage 2-20
allocation
of nucleus free storage 2-104
of user free storage 2-104

2-113

2-113

2-114

AMSERV function, execution of 2-114
ATTACH macrc 2-40

AUSERRST, HALT option 2-242

AUTOCR, IPL ccmmand processing 2-58,2-242

B
batch
CMS 2-149
mcdules used in 2-152
facility (see CMS Batch Facility)
BDAM

CMS support of 2-113
restrictions on 2-44
support of 2-43

Index

BDAM/QSAM, CMS support of 2-113
BLDL macro 2-39
BPAHM
CMS support of 2-113
support of 2-43
BSAM/QSAM, support of 2-43
BSP macro 2-41

C
called routine
register contents, when started 2-69
start-up table 2-69
caller, returning to 2-69
carriage control characters, CMS 2-97
chain header block 2-101

FLCLB in 2-102
FLCLNW in 2-102
FLHC in 2-102
FLNU in 2-102
FLPA in 2-103
format 2-102
MAX in 2-102
NUM in 2-102
POINTER in 2-102
SKEY in 2-103
TCODE in 2-103

chain links 2-87
Channel Address Word
Address Word))
Channel Status Word
Status Word))
CHAP macro 2-40
CHECK macro 2-42
CHECK processing, OS VSAM
CHKPT macro 2-41
CLCSE, CS VSAM, simulation of 2-119
CLOSE/TCLOSE macros 2-40
CMS (Conversational Monitor Systenm)
(see also virtual machines)

ABENRD codes 2-241

accessing the file system 2-93

Batch Facility (see CMS Batch Facility)

batch facility 2-149

modules used in 2-152

called routine table 2-31

command, handling 2-62

command language 2-2

command processing 2-30

commands (see CMS coamands)

console management 2-62

devices supported 2-13

DEVTAB (Device Table) 2-12

{(see CAW (Channel

(see CSW (Channel

2-121

Index 2-253

2-254

diagnostic aids 2-237
directories 2-155
disk organization 2-88
disk stcrage management 2-92
DMSFREE 2-12

free storage management 2-17

macro description 2-17

service routines 2-22
DMSFRES macro description 2-22
DMSFRET macro description 2-21
DMSITS 2-26,2-32
DMSNUC 2-12
DOS/VS support 2-48
dynamic storage management 2-93
error codes

DMSFREE 2-240

DMSFRES 2-240

DMSFRET 2-24¢C

DMSFREX 2-240
file

execution 2-62

processing 2-62
file status table block 2-87
file status table format 2-87
file status tables 2-86
file systes 2-4,2-6

accessing 2-93

management 2-86
files, storage organizatioan of 2-86
first command processing 2-60
free storage management 2-14,2-99

DMSFREE 2-17

GETMAIN 2-14
function table 2-34

reserved names 2-34
functicnal information 2-11%
handling, of PSW keys 2-107

initialization for 0S SVC handling 2-59

interactive console environment 2-62
interface with display terminals 2- 34
interrupt handling 2-7
interrupts, processing 2-98
introduction 2-2
I/0 control flow 2-95
I/0 operations 2-94
IPL command processing 2-58
label to module cross reference 2-189
loader 2-71
loader tables 2-14
lcading, from card reader 2-57
waintaining interactive session 2-62
saster file directory 2-90
miscellanecus functions 2-148
module entry point directory 2-157
mcdule tc label cross reference 2-169
nucleus 2-13
0S and DOS VSAM

functions supported 2-48

hardvare devices supported 2-49

overview of functional areas 2-52
printer carriage control 2-97
printing a file 2-97
processing, commands entered during
2-63
program
development facilities 2-5
organization 2-50
punching a card 2-96
read disk 1,0 2-98
reading a card 2-95
record formats 2-88
register usage 2z-11
restrictions on, as a saved systen
2-109
returning to calling routine 2-31
routines that access the file system
2-93
simulation
of DOS environment 2-137
of 0S by 2-122
storage
constant initialization 2-58
map 2-16,2-58
structure 2-12
structure of DMSNUC 2-11
SVC handling 2-26,2-32
symbol references 2-11
systea fanctions 2-53
system save area modification 2-32
transient area 2-13,2-29
user
area 2-29
program area 2-14
USERSECT (User Area) 2-12
virtual devices used in 2-239
virtual machine initialization 2-57
write disk I/C 2-98
CMS commands
ACCESS 2-45
FILEDEF 2-46
how to add one 2-3u
CMS macro library 2-247

CESANS-CMSVSAM DCSSs, storage relationships

with DMSASM 2-115
CESCB, defined 2-124
CMsCVT, defined 2-124
CNS/DOS
CLOSE functions 2-140
routines that perfora them 2-141
DOSLKED command 2-142
environment, termination of 2-148
environment termination command
DMSEAB 2-148
DMSDMP 2-~-148
DMSITP 2-148
execution related contrcl commands
2-142
FETCH command 2-142

IBM VM/370 System Logic and Problem Determination Guide--Voluge 2

initializaticn 2-138
data areas 2-138
initialization for 0OS VSAM processing
2-119
OPEN functions 2-140
routines that perform them 2-140
service ccmmand processing 2-148
service commands
DMSDSL 2-148
DMSDSV 2-148
DMSPRV 2-148
DMSRRY 2-148
DMSSRY 2-148
ESERY 2-148
SVC functions
CANCL-SVC 6 2-144
CDLOAD-SVC 65 2-146
EOJ-SVC 14 2-145
EXCP-SVC 0 2-144
FETCH-SVC 1 2-144
FETCH-SVC 2 2-144
FETCH-SVC 4 2-144
FREEVIS-SVC 62 2-146
GETVIS-SVC 61 2-146
MVCOM-SVC 5 2-1u44
POST-SVC 40 2-146
RELEASE-SVC 64 2-146
RUNMODE-SVC 66 2-146
SECTVAL-SVC 75 2-146
simulation of 2-144
SYC 11 2-145
SVC 12 2-145
SVC 16 2-145
svc 17 2-145
SVC 26 2-145
SVC 33 2-145
SVYC 34 2-145
SVC 37 2-146
SVC 50 2-146
SVC 8 2-145
SVC 9 2-145
SVC 95 2-146
treated as NOPs 2-147
USE-SVC 63 2-146
WAIT-SVC 7 2-145
SVC functicns not supported 2-147
SVC handling 2-116 :
CMS/D0OS macro library 2-251
CMSDOS-CMSVSAM-user program storage
relationships 2-117
CMS/VSAM errcr return processing 2-121
CMSVSAM-CMSDOS-user program storage
relationships 2-117
command
handling, CMS 2-62
language, CMS 2-2
processing
SET DOS ON 2-62
SET SYSNAME 2-61

commands (see CMS commands, CP commands
and RSCS commands)
file system manipulation 2-85
passed via DMSINS, execution of 2-63
process of, entered during CMS 2-63
completion processing
DOS VSAK programs 2-121
0S VSAM programs 2-121
console
function (gee CP (Control Program))
management, CHS 2-62
control block, manipulation macros,
simulation of, VSaMm 2-120
control card routine 2-81
ENTRY card 2-81
LIBRARY card 2-81
control flow for I/O processing 2-94

Control Program (see CP (Control Program))

conventions
linkage 2-66
SVCs 2-66

Conversational Monitor System (see CHS
(Conversational Monitor System))
CP (Control Program), handling of saved
systems 2-108
cross reference
label to modnle, CMS 2-189
module to label, CHMS 2-169

D
data base, loader 2-83
data set control block (DSCB) 2-42
data sets
oS
accessing 2-4S
defining 2-u6
reading 2-45
DCB macro 2-42
DDR program (see DASD Dump/Restore (DDR)
program)
DELETE macro 2-39
DEQ macro 2-40
DETACH macro 2-41
devices, CMS-supported 2-13
DEVTAB (Device Table) 2-12
DEVIYPE macro 2-U40
diagnostic aids, CMS 2-237
directories, CMS 2-155
disk
and file storage management 2-93
I,/0, CKS 2-98
organization in CMS 2-88
disk storage management
cHs 2-90
QMSK used in 2-90
QOMSK used in 2-90
display terminals, CMS interface 2-34

Index 2-255

DISPSW macr¢ display terminals, DISPSW
macro 2-34
DMKDDR (see DASD Dump Restore (DDR)
Frogram)
DMSABN module, batch, CMS 2-152
DMSACC module 2-130,2-131
used for access 2-93
DMSACF module 2-132
DMSACM module 2-132
DMSALU module 2-132
DMSAMS, operation of 2-115
DMSAMS-CMSAMS-CMSVSAM, storage
relationships 2-115
DMSARE module 2-131,2-132
DMSASN module 2-138,2-139
DMSBOP module 2-116,2- 141
DMSBOP VSAM processing 2-116
DMSBTB, general operation 2-149
DMSBTB module 2-149
DMSBTP, general operation 2-150
DMSBTP module 2-150
DBSCLS module 2-117,2-142
DMSCLS VSAM processing 2-117
DMSCPF module, batch, CMS 2-153
DMSCRD module, batch, CMS 2-152
DMSDLB module 2-138,2-140
DMSDLK module 2-143
DMSDOS module 2-116
DMSDOS VSAM processing 2-116
DMSDSK amodule, batch, CMS 2-153
DMSDSL, service commands, CHNS/DGS 2-1u48
DMSDSV, service commands, CMS/DOS 2-148
DMSERR
HALT option 2-242
AUSERRST NUCON field 2-242
DMSERR module, batch, CHMS 2-152
DMSEXSs 2-25
DMSEXS macro
CMS 2-108,2-112
format 2-112
DMSFCH module 2-142
DMSFET module 2-142
DMSFLD module 2-131,2-132
batch, CMS 2-153
DMSFRE module
method of operation 2-10u
used in free storage management 2-99
DMSFRE service routine 2-10S
CALOC option of 2-107
CHECK option of 2-106
CROFF opticn of 2-107
CRON option of 2-106
INIT1 option of 2-105
INIT2 option of 2-106
UREC option of 2-107
DMSFREE 2-12
allocated storage 2-105
alleocating nucleus free storage 2-20
allocating user free storage 2-20

error codes 2-24,2-110,2-240
free storage allocatioan 2-100
free storage pointers 2-101
operands 2-17
request efficiency 2-104
service routinss 2-22
storage management 2-17
DMSFRES 2-22
error codes 2-24,2-110,2-240
operands 2-22
DMSFRES macro
cMs 2-111
format 2-111
DMSFRET 2-21
error codes 2-24,2-110,2-240
operands 2-21
releasing storage 2-21
DMESFREX error codes 2-240
DMSINA 2-28
DMSINI module, batch, CMS 2-152
DMSINS module
batch, CMS 2-152
executing commands 2-63
DMSINT 2-28
DMSINT module 2-6U
DMSIOW 2-9
DMSITE 2-10
DMSITE module, batch, CMS 2-152
DMSITI 2-7
DMSITP 2-9
DMSITS 2-7,2-26,2-32
DMSITIS module 2-65
DMSKCP VSAM processing 2-117
DMSKEY 2-25
DMSKEY macro, CMS 2-108,2-111
DMSLDR module 2-82
batch, CHS 2-152
DMSLDS module 2-131,2-132
DMSLFS module 2-133
DMSLLU module 2-138,2-139
DMSMVE module 2-131,2-133
batch, CMS 2-152
DMSNUC 2-11,2-12
DMSOPT module 2-138,2-139
DMSPIO, carriage control characters 2-97
DMSPIO module 2-97
batch, C¥s 2-152
D¥SPRV, service commands, CMS/L0S 2-148
DMSQRY module 2-131,2-136
DMSRDC module, batch, CMS 2-153
DMSROS module 2-133,2-136
DMSRRVY, service commands, CMS/LOS 2-148
DMSESCT module 2-135
DMSSEB module 2-135
DHSSET module 2-138
batch, CMs 2-153
DMSSOP module 2-135
DMESRV, service commands, CMS/LOS 2-148
DMSSTT module 2-131,2-136

2-256 IBM VM/370 System Logic and Problem Determination Guide--Volume 2

DMSSYT module 2-136
DMSVIP module 2-119
DMSXCP mcdule 2-117

DOS

CLOSE functions 2-140

environment simulation under CMS 2-137
initialization 2-137,2-138
assign logical and physical units
2-139

associate a DTF table filename with a
logical unit 2-140

data areas 2-138

for 0S VSAM processing 2-119

list assignments of CMS/DOS logical
units 2-139

reseting cempiler options 2-139
resetting DOS environment options
2-139

setting compiler options 2-139
setting DOS environment options

2-139
OPEN functions 2- 140
SYC calls 2-67
system ccntrol commands, processing of
2-137
VSAN

functions supported by CMS 2-48
hardward devices supported by CMS
2-49
DOS commands
DOS VSAM
ccapleticn processing 2-121
execuaticn of, for a DOS user
DOSCB 2-140
DOSCR chain, creaticn of 2-114
DOS-0S-VSAM-user program storage
relationships 2-118
DOS/VS
PETCH function 2-142
Linkage Editor, CMS, simulation of
2-143
support, under CMS
DSCB 2-42
DTF tables, cpening files associated with
2-141
DTFs, closing files associated with 2-142
dump (see also CP (Control Program), dump
and CMS (Ccnversational Monitor System),
dump)
dynamic stcrage management, active disk and
file 2-93

2-137

2-116

2-48

E

END card routine
operation 2-80

ERQ macro 2-41

ENTRY control card 2-81

entry point directory, CMS

2-80

2-157

environments
non-CMS 2-113
access method support for 2-113
ERET error routine processing 2-121

error codes 2-24
DMSFREE 2-24,2-240
DMSPRES 2-24 ,2-240
DMSFRET 2-24,2-240"
DMSFREX 2-240

from DMSFREE 2-110
from DMSFRES 2-110
from DMSFRET 2-110

error printouts 2-153

error return, CMS/VSAM, processing of

2-121

error routine, ERET, processing of

ESD card codes 2-83

ESD type 0 card routine
operation 2-74

EST type 1 card routine
operation 2-75

ESD type 10 routine 2-77

ESC type 2 card routine
operation 2-75

ESD type 4 card routine
operation 2-76

ESD type 5 card routine
operation 2-76

ESD type 6 card routine 2-76
operation 2-76

ESERV, service commands, CMS/DOS

ESIDTB (ESD ID table) entry 2-83

executing
CMS files 2-62
text files 2-71

BEXIT macro 2-38

exit routine, user, processing of

external interrupt
BLIP character
HNDEXT macro
in CHMS 2-10
timer 2-10

EXTIRACT macro

2-121
2-74

2-74

2-75
2-76

2-76

2-148

2-121

2-10
2-10

2-40

F
FCB (File Control Block)
F2Z0V macro 2-40
file
arrangement of fixed-length records, in
CMS 2-89
arrangement of variable-length records,
in CMS 2-89
management
CMS 2-4,2-6
file status table (FST)
CMsS 2-87
format 2-87
file status table block, format

2-11

2-87

Index 2-257

file status tables, CMS 2-86
file systenm
CMS, management 2-86
manipulaticn commands 2-85
FILEDEF ccommand 2-46
AUXPROC option 2-47
defining 0S data sets 2-46
flow 2-131
files, 0S fcrmat, support of 2-42
FIND macro 2-39
first chain link format 2-89
first command processiang, CMS 2-60
format
DMSEXS macrc, CHS
DMSFRES macros, CMS 2-111
DMSKEY macro, CMS 2-111
first chain link, in CMS 2-89
nth chain link, in CMS 2-89
system save area 2-70
user save area 2-70
free chain element format
free storage
allocation 2-100
management 2-99
CMS 2-14,2-99
pointers 2-100
nucleus, allocation of
pointers, DMSFREE 2-101
user, allocation of 2-104
free storage table
FREETAB 2-101
NUCCODE 2-101
SYSCODE 2-101
TRNCODE 2-101
USARCODE 2-101
USERCODE 2-101
FREEDBUF macro 2-41
FREEMAIN macro 2-38
FREEPOOL macro 2-39
FREETAB free storage tabls 2-101
functional area, overview, CMS 2-52

2-112

2-103

2-104

G
GENCB processing
GET macro 2-43
GETMAIN
allocated storage 2-105
free element chain 2-17
free storage
allocation 2-100
management pointers 2-100
GETMAIN/FREEMAIN macros 2-39
simulation 2-17
GETMAIN macro 2-38
GETPOOL macro 2-39

2-120

H
HALT option 2-242

AUSERRST NUCON field 2-242

2-258

handling
0s files
on CMS disks 2-36
on CS or DCS disks
high~core nucleus chain

2-36

2-101

high-core user chain 2-101

I

ICS card routine 2-73
operation 2-73

IDENTIFY macro 2-40

initialization

CMS virtual machine 2-57
CMS/D0OS, for CS VSAM processing 2-119

DMSINS modnle 2-58
DOS 2-137

for 0S SVC handling, CMS 2-59

of a named system 2-60
of a saved system 2-60

storage constant, CHMS

system table, CMS 2-58
input restrictions, loader

input /output (see I/0)

2-58

interactive console environment, CMS

interrupt handling
cMs 2-7

input /output interrupts 2-8

SVC interrupts 2-7

terminal interrupts

DMSITS 2-7

external interrupts 2-

machine check interrupts 2-10

program interrupts 2-9

reader/punch/printer interrupts
user-controlled device interrupts

interrupts, processing 2-

introduction, CMS 2-2
INISVC 2-26
I/0
disk, CHMS 2-98
interrupt, in CMS 2-8

macros, 0S VSAM, simulation of

2-85
2-62
2-9
10
-9

2-9

98
2-120

I/0 control flow, CHMS 2-95

I/0 operations, CMS 2-94
IPL command precessing
AUTOCR 2-58,2-242
CMS 2-58

K
key
real PSW 2-108
real storage 2-108
virtual PSW 2-108
virtual storage 2-108
keys, storage protection

IBM VM/370 System Logic and Problem Determination Guide--Volume 2

2-107

L
label to module cross reference,
LIBRARY control card 2-81
LINK macro 2-38
linkage conventions
SVCs 2-66
LISTDS command flow
LOAD macro 2-39
loader
cHMs 2-71
data base 2-83
input restrictiomns
loader tables, (CMS)
loading
CMS, from card reader
from card reader, CMS
text files 2-71

lcw-core nucleus chai

1
low-core user chain

CMs 2-189

2-66

2-131

2-85
2-14

2-57
2-57

n 2-101
2-101

M
machine check,
macre library
CMS 2-247
CMS/DOS 2-251
macrc processing
/0
ENDREQ
BRASE
GET 2-120
POINT 2-120
PUT 2-120
macros
centrol bleck manipulation, VSAM
GENCB 2-120
MODCB 2-120
0S (see OS (Operating System), macros)
SHOWCB 2-120
TESTCB 2-120
maintaining interactive session, CMS
master file directory
CHS 2-90
structure 2-92
miscellaneous CMS functions
MODCB processing 2-120
module entry point directory, CMS
module to label cross reference,
MOVEFILE command flow 2-131

interrupt, in CMS 2-10

2-120
2-12¢

2-120

2-62

2-148

2-157
cMs 2-169

N
named system initialization
npcn-CMS crerating environments
NOTE macro 2-41

Nth chain link, format

2-60
2-113

2-89

nucleus
free storage, allocation
storage copy of 2-58
nucleus (CMS) 2-13

2-104

0

OPEN, OS VSAM, simulation of 2-119
OPEN/OPENJ macros 2-40

operating environments

non—-CMS 2-113
access method support for 2-113
operation

of DMSINT 2-64

of DMSITS 2-65
organization, virtual disk 2-88
0S (Operating Systenm)

control block functions, CMS simulation

of 2-123
data management simulation
data sets, reading 2-45
formatted files 2-42
handling

files on CMS disks 2-36

files on 0S or DOS disks
macros

ABEND 2-39

ATTACH 2-40

BLDL 2-39

RSP 2-41

CHAP 2-40

CHECK 2-42

CHEKPT 2-41

CLOSE/TCLOSE 2-40

2-35

2-36

DCB 2-42
DELETE 2-39
DEQ 2-40

descriptions of 2-37
DETACH 2-41

DEVTIYPE 2-40

ENQ 2-41

EXIT 2-38

EXTRACT 2-40

FEOV 2-40

FIND 2-39

FREEDBUF 2-41
FREEMAIN 2-38
FREEPOOL 2-39

GET 2-43

GETHMAIN 2-38
GETMAIN/FREEMAIN 2-39

GETPOOL 2-39
IDENTIFY 2-40
LINEK 2-38

LCAD 2-39

NOTE 2-41
CPEN/OPENJ 2-40

Index

2-259

2-42
2-38
2-43
2-44
2-41
2-44
2-39
2-38
2-41
2-39
2-41
2-41
2-40
2-39

POINT
POST
PUT
PUTX
RDJFCB
READ
RESTORE
RETURN
SNAP
SPIE
STAE
STAX
STIMER
STOW
SYNADAF 2-41
SYNADRLS 2-41
TCLEARQ 2-41
TGET/TPUT 2-41
TIME 2-39
TTIMER 2-40
under CMS 2-35
WAIT 2-38
WRITE 2-44
WTO/WNTOR 2-40
XCTL 2-38

XDAP 2-38

VSAM

fanctions supported by CHMS

2-48

hardvare devices supported by CMS

2-49
0S ACCESS, flcw of commands used in
0S access method modules
DMSACC 2-131
DMSACF 2-132
DMSACM 2-132
DMSALU 2-132
DMSARE 2-132
DMSFLD 2-132
CONCAT 2-132
DSN 2-132
MEMBER 2-132
DMSLDS 2-132
DMSLFS 2-133
DMSMVE 2-133
DMSQRY 2-136
DISK routine 2-136
SEARCH routine 2-136

DMSROS

2-260

2-133
CHKSENSE routine 2-137
CHKXTNT routine 2-137
CHRCNVRT routine 2-136
common routines 2-136
DISKIO routine 2-137
GETALT routine 2-137
RDCNT routine 2-137
ROSACC routine 2-133
ROSFIND routine 2-134
ROSNTPTB routine 2-134

2-130

0s
0s

0s
0s
0s

ROSRPS routine 2-134

ROSSTRET routine 2-134

ROSSTT routine 2-133

SETXTNT routine 2-137
DMSSCT 2-135

CKCONCAT routine 2-135

FIND (Type C) routine 2-135
NOTE routine 2-135
POINT routine 2-135
DMSSEB 2-13S
EOBROUTN routine
OSREAD routine
DMSSOoP 2-135
DMSSTT 2-136
DMSSVT 2-136
BLDL routine 2-136
BSP routine 2-136
FIND (Type D) routine
access method support
functions
CMS module used for
defined 2-122
simulated by CMS 2-122
SVC numbers of 2-122
macro simalation SVC calls
simulation by CHMS 2-122
simulation routines 2-124
ABEND-SVC 13 2-126
ATTACH-SVC 42 2-127
BACKSPACE-SVC 69 2-129
BLDL/FIND (Type D)-SVC 18
CHAP-SVC a4 2-127
CHECK 2-129
CHKPT-SVC 63 2-128
CLOSE/TCLOSE~-SVC 20/23
DELETE-SVC 9 2-125
DEQ-SVC 48 2-128
DETACH~-SVC 62 2-128
DEVTYPE-SVC 24 2-126
ENQ-SVC 56 2-128
BEXIT-SVC 3 2-125
EXTRACT-SVC 40 2-127
FEOV-SVC 31 2-127
FREEDBUF-SVC 57 2-128
FREEMAIN-SVC 5 2-125
GETMAIN/FREEMAIN-SVC 10
GETMAIN-SVC 4 2-125
GETPOOL 2-126
GET/PUT-SVC 96
IDENTIFY-SVC 41
LINRK-SVC 6 2-125
LOAD-SYC 8 2-125
NOTE/PCINT/FIND (Type C)
notes on 2-130
OPEN/OEENJ-SVC 19/22
POST-SVC 2 2-124
provided by CHS
RDJFPCB-SVC 64

2-135
2-135

2-136
2-113

2-122

2-67

2-126

2-126

2-125

2-129

2-127
2-129
2-126

2-124
2-128

IBM VM/370 System Logic and Problem Determination Guide--Volume 2

READ/WRITE 2-129
RESTORE-SVC 17 2-126
SNAP-SVC 51 2-128
SPIE-SVZ 14 2-126
STAE-SVC 60 2-128
STAX-SVC 96 2-129
STIMER-SVC 47 2-127
STOW-SVC 21 2-126
SINAD-SYC 68 2-129
TCLEARQ-SVC 94 2-129
TGET/TPUT-SVC 93 2-129
TIME-SVC 11 2-126
TRKBAL-SVC 25 2-127
TTIMER-SVC 46 2-127
used by Assembler 2-124
used by FORTRAN 2-124
used by PL/I 2-124
WAIT-SVYC 1 2-124
WIO/WTOR-SVC 35 2-127
XCTL-SvVC 7 2-125
XDAP-SVC 0 2-124
0S SVC handling, initialization for, CMS
2-59
0S VSAM
CHECK processing 2-121
CLOSE, simulation of 2-119
execution, user 2-118
I/0 macros, simulation of 2-120
OPEN, simulation of 2-119
Frcgram ccepletion processing 2-121
0S-DOS-VSAM-user program storage
relationships 2-118
overview, CMS, functional areas 2-52

P
patch contrel block (PCB) 2-85
PLIST (parameter list) 2-11
POINT macro 2-42
prointers, free storage management 2-100C
POST macro 2-38
printer, interruptions 2-9
printing a file, CHS 2-57
printouts, error 2-153
processing
CMS files 2-62
ccmmands entered during CMS session
2-63
DOS system control commands 2-137
interrupts 2-98
progran
interruption, in CMS 2-9
organization, CHS 2-50
program areas
transient 2-68
user 2-68
Program Status Word (see PSW (Program
Status Word))

PRSERCH routine 2-82
operation 2-82

PSW (Program Status Word), keys, CMS 2-25
PSW keys, CMS handling of 2-107
punch, interruptions 2-9
punching a card, CMS 2-96
PUT macro 2-43
PUTX macros 2-44

0 .
QMSK data block 2-92

QUERY command flow 2-131

querying options in the virtual machine
environment 2-60

R
RDJFCB macro 2-41
READ macro 2-4&
reader, interruptions 2-9
reading
a card, CMs 2-95
0S data sets 2-45
real
PSW key 2-108
storage key 2-108
record formats, CMS 2-88
REFADR routine 2-82
operation 2-82
REFTIBL
address field 2-85
entry 2-84
flagl tyte 2-84
flag2 byte 2-85
info field 2-84
name field 2-84
value field 2-85
register
contents when called routine starts
2-69
restoration by called routine 2-70
registers, usage, CMS 2-11
RELEASE command flow 2-131
releasing
allocated storage 2-21,2-105
storage 2-21,2-104
REP card routine 2-78
operation 2-78
RESTORE macro 2-39
restrictions
BDAM 2-44]
input, loader 2-85
on CMS as a saved system 2-109
return location, when returning to caller
2-69
RETORN macro 2-38

Index 2-261

returning
to caller 2-69
register restoration 2-70
return location 2-69
RLD card routine 2-79
operation 2-79

S
save area
CMS system 2-32
CHS system save area format 2-32
user save area format 2-32
saved systen
effect on CMS as a 2-109
handling of, CP 2-108
initialization 2-60
restrictions on CMS as a 2-109
service routines
DMSFRE 2-105
TSO, support of 2-122

SET DOS ON ccmmand processing, VSAM 2-60

SET SYSRAME ccmmand processing Z2-61
setting opticns in the virtual machine
environment 2-60

SHOWCB processing 2-120

simulation, of 0S by CMS 2-122

simulation routines, 0S (see 0S simulation

routines)

SLC card routine 2-72
operation 2-72

SNAP macro 2-41

sranned records, usage 2-43

SPIE macro 2-39

STAE macro 2-41

start-up table, called routine 2-69

STATE command flow 2-131

status tables, file, CMS 2-86

STAX macro 2-41

STIMER macro 2-41

storage
allocated by DMSFREE 2-105
allocated by GETMAIN 2-105
allocation 2-20
CMS 2-17
constant initialization, CMS 2-58
free, allocation 2-100
map, CMS 2-58
organizaticn of CMS files 2-86
protection keys 2-107
releasing 2-21
releasing of 2-104

storage relationships, DOS-0S-VSAM-user

program 2-118
STOW macro 2-39
STRINIT macro 2-14

SvC
calls (see SVC calls)
handling
by user 2-27

commands entered from terminal 2-28

invalid SvCs 2-28
linkage 2-26
0S and DOS/VS SVC simulation 2-27
type of SVC 2-26
handiing for CMS/DOS 2-116
interrupt
CMS internal linkage SVCs 2-7
other CMS SVCs 2-7
types 2-66
user handled 2-67

201 2-66
202 2-66
203 2-66
SVC calls
DOS 2-67

invalid 2-67
0S macro simulation 2-67
SvYC 201 2-66
SVC 202 2-26,2-66
search hierarchy 2-28
search hierarchy for 2-68
SVC 203 2-27,2-66
SYNADAF macro 2-41
SYNADRLS macro 2-40
system
file, management 2-86
functions, CMS 2-53
save area format 2-70
table initialization, CMS 2-58

T
table, start-up, called routine 2-69
table entry
ESIDTB 2-83
REFTBL 2-84
TCLEARQ macro 2-41
terminal interruptions, in CMS 2-9
termination, abnormal (see abnormal
termination (abend))
TESTCB processing 2-120
text files 2-71
executing 2-71
loading 2-71
TGET/TPUT macros 2-41
thrashing, VPXK of 0 2-110
TIME macro 2-39
transient area (CMS) 2-13
transient program areas 2-68
TSC service routine, support of 2-122
TTIMER macro 2-40
TXT card routine 2-77
operation 2-77

2-262 IBM VM/370 System Logic and Problem Determination Guide--Volume 2

U
user
exit routine processing
free storage, allccation of
handled SVCs 2-67
program areas 2-68
save area format 2-70
user program-CMSDOS-CMSVSAM storage
relationships 2-117
user program-VYSAM-DOS-0S storage
relationships 2-118
user-controlled device interrupts 2-9
USERSECT (User Area) 2-12

2-121
2-104

al
vices used in CMS 2-239
accessing 2-93
organization 2-88
physical organization 2-88
PSW key 2-108
virtuwal machine
environment
querying options 2-60
setting options 2-60
initialization, CM5 2-57

Vvirtual Machine Facility/370 (VM/370), CHMS

2-2

virtual storage, key 2-108
vM/370

(VM/370))

(see Virtual Machine Facility/370

Volume Table of Contents (VTGC), support of

2-42

VPK of 0 caused overhead 2-110

VSaM
CLOSE, 0S, simulation of 2-119
CMS support of 2-113,2-114
control block manipulation macros,
simulation of 2-120
execution for OS user 2-118
execution of, for a DCS user
OPEN, 0S, simulation of 2-119
processing, DMSDOS 2-116
SET DOS ON command processing 2-60
support of 2-43

VSAM-DOS-0S-user program storage

relationships 2-118

2-116

w

WAIT macro 2-38
WRITE macro 2-44
WTO/WTOR macros 2-40

X
XCTL macro 2-38
XDAP macro 2-38

Index

2-263

Note: Staples can cause problems with automated mail sorting equipment.

Please use pressure sensitive or other gummed tape to seal this form.

Trim Along This Line

.o

L R R N N I R N]

READER’'S

COMMENT
FORM
Title: 1BM Virtual Machine Facility/370: Order No. SY20-0887-1
System Logic and Problem Determination
Guide Volume 2
Please check or fill in the items; adding explanations/comments in the space provided.
Which of the following terms best describes your job?
O Customer Engineer O Manager O Programmer O Systems Analyst
O Engineer {0 Mathematician O Sales Representative [0 Systems Engineer
O Instructor O Operator O Student/Trainee O Other (explain below)

How did you use this publication?
O Introductory text O Reference manual
O Other (explain)

0O Student/ O Instructor text

Did you find the material easy to read and understand? O Yes O No (explain below)

Did you find the material organized for convenient use? [Yes 0 No (explain below)

Specific criticisms (expiain beiow)
Clarifications on pages
Additions on pages
Deletions on pages
Errors on pages

Explanations and other comments:

Thank you for your cooperation. No postage necessary if mailed in the US.A.

S$Y20-0887-1

Reader’'s Comment Form

Fold and tape Ptease Do Not Staple

au1n 3uojy plod4 10 N

BUSINESS REPLY MAIL
FIRST CLASS PERMIT 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department D58, Building 706-2

PO Box 390

Poughkeepsie, New York 12602

Attn: VM/370 Publications

Fold and tape Please Do Not Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y: 10604

1BM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., US.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y,, US.A. 10601

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Z IOA 3pIND uoneulwIalaq wWajqoid pue 2160 waysAg :0/g/AM|1004 Bulyoep [ENLIA NG|

'V'S'N ut paauiag

L-£880-0CAS

S$Y20-0887-1

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., US.A. 10591

IBM World Trade Europe/Middie East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., US.A. 10601

0LE/Aujoe4 sulyoepy [eMmUAIA NG

Z IO 8pInD uoleUIWIB)S(] WA|qOid pue 3160 wa)sAg

‘V'S'N ut pajung

L-L8800CAS

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	2-134
	2-135
	2-136
	2-137
	2-138
	2-139
	2-140
	2-141
	2-142
	2-143
	2-144
	2-145
	2-146
	2-147
	2-148
	2-149
	2-150
	2-151
	2-152
	2-153
	2-154
	2-155
	2-156
	2-157
	2-158
	2-159
	2-160
	2-161
	2-162
	2-163
	2-164
	2-165
	2-166
	2-167
	2-168
	2-169
	2-170
	2-171
	2-172
	2-173
	2-174
	2-175
	2-176
	2-177
	2-178
	2-179
	2-180
	2-181
	2-182
	2-183
	2-184
	2-185
	2-186
	2-187
	2-188
	2-189
	2-190
	2-191
	2-192
	2-193
	2-194
	2-195
	2-196
	2-197
	2-198
	2-199
	2-200
	2-201
	2-202
	2-203
	2-204
	2-205
	2-206
	2-207
	2-208
	2-209
	2-210
	2-211
	2-212
	2-213
	2-214
	2-215
	2-216
	2-217
	2-218
	2-219
	2-220
	2-221
	2-222
	2-223
	2-224
	2-225
	2-226
	2-227
	2-228
	2-229
	2-230
	2-231
	2-232
	2-233
	2-234
	2-235
	2-236
	2-237
	2-238
	2-239
	2-240
	2-241
	2-242
	2-243
	2-244
	2-245
	2-246
	2-247
	2-248
	2-249
	2-250
	2-251
	2-252
	2-253
	2-254
	2-255
	2-256
	2-257
	2-258
	2-259
	2-260
	2-261
	2-262
	2-263
	replyA
	replyB
	xBack

